IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v52y2018i3p657-672.html
   My bibliography  Save this article

Just-In-Time Vehicle Routing for In-House Part Feeding to Assembly Lines

Author

Listed:
  • Simon Emde

    (Technische Universität Darmstadt, 64289 Darmstadt, Germany)

  • Michael Schneider

    (RWTH Aachen University, 52072 Aachen, Germany)

Abstract

This paper deals with the problem of routing in-house transport vehicles that feed parts to workstations in assembly plants or workshops just in time. The capacitated vehicles, typically so-called tow trains, perform their assigned route cyclically without break and provide each station with the exact quantity of parts required until the next arrival of the vehicle. Hence, the demand of each station depends on the duration of the route serving the station: The longer the route duration, the less frequently the station is visited and the higher its demand. The goal is to minimize first the number of vehicles and second the total route duration, while respecting given minimum service frequencies at the stations. We provide a mathematical formulation of this novel problem and address it by means of a large neighborhood search. The algorithm is able to solve realistic instances in acceptable time and vastly outperforms a default solver. We discuss two variants of the problem, one in which split deliveries to stations are allowed and another assuming that all stations lie on a straight line. Finally, we investigate the extent to which assuming constant demand rates may lead to problems during the day-to-day operations of the part-feeding system, where demands are not necessarily constant.

Suggested Citation

  • Simon Emde & Michael Schneider, 2018. "Just-In-Time Vehicle Routing for In-House Part Feeding to Assembly Lines," Transportation Science, INFORMS, vol. 52(3), pages 657-672, June.
  • Handle: RePEc:inm:ortrsc:v:52:y:2018:i:3:p:657-672
    DOI: 10.1287/trsc.2018.0824
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2018.0824
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2018.0824?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Pisinger & Stefan Ropke, 2010. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 399-419, Springer.
    2. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79443, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    4. Da Silveira, Giovani & Borenstein, Denis & Fogliatto, Flavio S., 2001. "Mass customization: Literature review and research directions," International Journal of Production Economics, Elsevier, vol. 72(1), pages 1-13, June.
    5. Emde, Simon & Gendreau, Michel, 2017. "Scheduling in-house transport vehicles to feed parts to automotive assembly lines," European Journal of Operational Research, Elsevier, vol. 260(1), pages 255-267.
    6. Simon Emde & Malte Fliedner & Nils Boysen, 2012. "Optimally loading tow trains for just-in-time supply of mixed-model assembly lines," IISE Transactions, Taylor & Francis Journals, vol. 44(2), pages 121-135.
    7. Richard C. Larson, 1988. "Transporting Sludge to the 106-Mile Site: An Inventory/Routing Model for Fleet Sizing and Logistics System Design," Transportation Science, INFORMS, vol. 22(3), pages 186-198, August.
    8. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    9. Francis, Peter & Smilowitz, Karen, 2006. "Modeling techniques for periodic vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 872-884, December.
    10. de Souza, Mauricio C. & de Carvalho, Carlos R.V. & Brizon, Wellington B., 2008. "Packing items to feed assembly lines," European Journal of Operational Research, Elsevier, vol. 184(2), pages 480-489, January.
    11. Emde, Simon, 2017. "Scheduling the replenishment of just-in-time supermarkets in assembly plants," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 109730, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Irnich, S. & Schneider, M. & Vigo, D., 2014. "Four Variants of the Vehicle Routing Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63514, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Webb, Ian R. & Larson, Richard C., 1995. "Period and phase of customer replenishment: A new approach to the Strategic Inventory/Routing problem," European Journal of Operational Research, Elsevier, vol. 85(1), pages 132-148, August.
    14. Emde, Simon & Gendreau, Michel, 2017. "Scheduling in-house transport vehicles to feed parts to automotive assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 109727, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. AGHEZZAF, El-Houssaine & RAA, Birger & VAN LANDEGHEM, Hendrik, 2006. "Modeling inventory routing problems in supply chains of high consumption products," LIDAM Reprints CORE 1786, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Masood Fathi & Victoria Rodríguez & Dalila B.M.M. Fontes & Maria Jesus Alvarez, 2016. "A modified particle swarm optimisation algorithm to solve the part feeding problem at assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 878-893, February.
    17. Raa, Birger & Aghezzaf, El-Houssaine, 2009. "A practical solution approach for the cyclic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 192(2), pages 429-441, January.
    18. Tan, C.C.R. & Beasley, J.E., 1984. "A heuristic algorithm for the period vehicle routing problem," Omega, Elsevier, vol. 12(5), pages 497-504.
    19. Gilbert Laporte, 2007. "What you should know about the vehicle routing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(8), pages 811-819, December.
    20. Emde, Simon & Fliedner, Malte & Boysen, Nils, 2012. "Optimally loading tow trains for just-in-time supply of mixed-model assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79434, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    21. Emde, Simon & Boysen, Nils, 2012. "Optimally routing and scheduling tow trains for JIT-supply of mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 217(2), pages 287-299.
    22. Zenker, Michael & Emde, Simon & Boysen, Nils, 2016. "Cyclic inventory routing in a line-shaped network," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79441, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    23. Jean-Yves Potvin & Tanguy Kervahut & Bruno-Laurent Garcia & Jean-Marc Rousseau, 1996. "The Vehicle Routing Problem with Time Windows Part I: Tabu Search," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 158-164, May.
    24. Battini, Daria & Boysen, Nils & Emde, Simon, 2013. "Just-in-Time supermarkets for part supply in the automobile industry," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79438, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    25. Daria Battini & Nils Boysen & Simon Emde, 2013. "Just-in-Time supermarkets for part supply in the automobile industry," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 24(2), pages 209-217, July.
    26. Maurizio Faccio & Mauro Gamberi & Alessandro Persona & Alberto Regattieri & Fabio Sgarbossa, 2013. "Design and simulation of assembly line feeding systems in the automotive sector using supermarket, kanbans and tow trains: a general framework," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 24(2), pages 187-208, July.
    27. Aghezzaf, El-Houssaine & Raa, Birger & Van Landeghem, Hendrik, 2006. "Modeling inventory routing problems in supply chains of high consumption products," European Journal of Operational Research, Elsevier, vol. 169(3), pages 1048-1063, March.
    28. Baita, Flavio & Ukovich, Walter & Pesenti, Raffaele & Favaretto, Daniela, 1998. "Dynamic routing-and-inventory problems: a review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(8), pages 585-598, November.
    29. Zenker, Michael & Emde, Simon & Boysen, Nils, 2016. "Cyclic inventory routing in a line-shaped network," European Journal of Operational Research, Elsevier, vol. 250(1), pages 164-178.
    30. Jean-Yves Potvin & Samy Bengio, 1996. "The Vehicle Routing Problem with Time Windows Part II: Genetic Search," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 165-172, May.
    31. Martin W. P. Savelsbergh, 1992. "The Vehicle Routing Problem with Time Windows: Minimizing Route Duration," INFORMS Journal on Computing, INFORMS, vol. 4(2), pages 146-154, May.
    32. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    33. Simon Emde, 2017. "Scheduling the replenishment of just-in-time supermarkets in assembly plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 321-345, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyu, Zhongyuan & Huang, George Q., 2023. "Cross-docking based factory logistics unitisation process: An approximate dynamic programming approach," European Journal of Operational Research, Elsevier, vol. 311(1), pages 112-124.
    2. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    3. Emilio Moretti & Elena Tappia & Veronique Limère & Marco Melacini, 2021. "Exploring the application of machine learning to the assembly line feeding problem," Operations Management Research, Springer, vol. 14(3), pages 403-419, December.
    4. Masood Fathi & Morteza Ghobakhloo, 2020. "Enabling Mass Customization and Manufacturing Sustainability in Industry 4.0 Context: A Novel Heuristic Algorithm for in-Plant Material Supply Optimization," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    5. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2020. "Loading tow trains ergonomically for just-in-time part supply," European Journal of Operational Research, Elsevier, vol. 284(1), pages 325-344.
    6. Bingtao Quan & Sujian Li & Kuo-Jui Wu, 2022. "Optimizing the Vehicle Scheduling Problem for Just-in-Time Delivery Considering Carbon Emissions and Atmospheric Particulate Matter," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    7. Bock, Stefan, 2024. "Vehicle routing for connected service areas - a versatile approach covering single, hierarchical, and bi-criteria objectives," European Journal of Operational Research, Elsevier, vol. 313(3), pages 905-925.
    8. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2023. "Multi-depot electric vehicle scheduling in in-plant production logistics considering non-linear charging models," European Journal of Operational Research, Elsevier, vol. 306(2), pages 828-848.
    9. Emde, Simon & Tahirov, Nail & Gendreau, Michel & Glock, Christoph H., 2021. "Routing automated lane-guided transport vehicles in a warehouse handling returns," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1085-1098.
    10. Christos Orlis & Nicola Bianchessi & Roberto Roberti & Wout Dullaert, 2020. "The Team Orienteering Problem with Overlaps: An Application in Cash Logistics," Transportation Science, INFORMS, vol. 54(2), pages 470-487, March.
    11. Emilio Moretti & Elena Tappia & Martina Mauri & Marco Melacini, 2022. "A performance model for mobile robot-based part feeding systems to supermarkets," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 580-613, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2020. "Loading tow trains ergonomically for just-in-time part supply," European Journal of Operational Research, Elsevier, vol. 284(1), pages 325-344.
    2. Emilio Moretti & Elena Tappia & Martina Mauri & Marco Melacini, 2022. "A performance model for mobile robot-based part feeding systems to supermarkets," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 580-613, September.
    3. Simon Emde & Lukas Polten, 2019. "Sequencing assembly lines to facilitate synchronized just-in-time part supply," Journal of Scheduling, Springer, vol. 22(6), pages 607-621, December.
    4. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2023. "Multi-depot electric vehicle scheduling in in-plant production logistics considering non-linear charging models," European Journal of Operational Research, Elsevier, vol. 306(2), pages 828-848.
    5. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    6. Zenker, Michael & Emde, Simon & Boysen, Nils, 2016. "Cyclic inventory routing in a line-shaped network," European Journal of Operational Research, Elsevier, vol. 250(1), pages 164-178.
    7. Simon Emde, 2017. "Scheduling the replenishment of just-in-time supermarkets in assembly plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 321-345, January.
    8. C. Briand & Y. He & S. U. Ngueveu, 2018. "Energy-efficient planning for supplying assembly lines with vehicles," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 387-414, December.
    9. Emde, Simon & Gendreau, Michel, 2017. "Scheduling in-house transport vehicles to feed parts to automotive assembly lines," European Journal of Operational Research, Elsevier, vol. 260(1), pages 255-267.
    10. Bertazzi, Luca & Laganà, Demetrio & Ohlmann, Jeffrey W. & Paradiso, Rosario, 2020. "An exact approach for cyclic inbound inventory routing in a level production system," European Journal of Operational Research, Elsevier, vol. 283(3), pages 915-928.
    11. Masood Fathi & Morteza Ghobakhloo, 2020. "Enabling Mass Customization and Manufacturing Sustainability in Industry 4.0 Context: A Novel Heuristic Algorithm for in-Plant Material Supply Optimization," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    12. Divsalar, Ali & Vansteenwegen, Pieter, 2016. "A two-phase algorithm for the cyclic inventory routing problemAuthor-Name: Chitsaz, Masoud," European Journal of Operational Research, Elsevier, vol. 254(2), pages 410-426.
    13. Rau, Hsin & Budiman, Syarif Daniel & Widyadana, Gede Agus, 2018. "Optimization of the multi-objective green cyclical inventory routing problem using discrete multi-swarm PSO method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 120(C), pages 51-75.
    14. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    15. Michael Drexl, 2018. "On the One-to-One Pickup-and-Delivery Problem with Time Windows and Trailers," Working Papers 1816, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. Schneider, Michael & Schwahn, Fabian & Vigo, Daniele, 2017. "Designing granular solution methods for routing problems with time windows," European Journal of Operational Research, Elsevier, vol. 263(2), pages 493-509.
    17. Michael Drexl, 2021. "On the one-to-one pickup-and-delivery problem with time windows and trailers," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 1115-1162, September.
    18. Raa, Birger & Aouam, Tarik, 2021. "Multi-vehicle stochastic cyclic inventory routing with guaranteed replenishments," International Journal of Production Economics, Elsevier, vol. 234(C).
    19. Raa, Birger & Aouam, Tarik, 2023. "A shortfall modelling-based solution approach for stochastic cyclic inventory routing," European Journal of Operational Research, Elsevier, vol. 305(2), pages 674-684.
    20. Bock, Stefan, 2020. "Optimally solving a versatile Traveling Salesman Problem on tree networks with soft due dates and multiple congestion scenarios," European Journal of Operational Research, Elsevier, vol. 283(3), pages 863-882.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:52:y:2018:i:3:p:657-672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.