IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v109y1998i1p24-42.html
   My bibliography  Save this article

Decomposition of unreliable assembly/disassembly networks with limited buffer capacity and random processing times

Author

Listed:
  • Helber, Stefan

Abstract

No abstract is available for this item.

Suggested Citation

  • Helber, Stefan, 1998. "Decomposition of unreliable assembly/disassembly networks with limited buffer capacity and random processing times," European Journal of Operational Research, Elsevier, vol. 109(1), pages 24-42, August.
  • Handle: RePEc:eee:ejores:v:109:y:1998:i:1:p:24-42
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(97)00166-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stanley B. Gershwin, 1987. "An Efficient Decomposition Method for the Approximate Evaluation of Tandem Queues with Finite Storage Space and Blocking," Operations Research, INFORMS, vol. 35(2), pages 291-305, April.
    2. Ernest Koenigsberg, 1959. "Production Lines and Internal Storage--A Review," Management Science, INFORMS, vol. 5(4), pages 410-433, July.
    3. Stanley B. Gershwin & Irvin C. Schick, 1983. "Modeling and Analysis of Three-Stage Transfer Lines with Unreliable Machines and Finite Buffers," Operations Research, INFORMS, vol. 31(2), pages 354-380, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Helber & Carolin Kellenbrink & Insa Südbeck, 2024. "Evaluation of stochastic flow lines with provisioning of auxiliary material," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 669-708, September.
    2. Jean-Sébastien Tancrez, 2020. "A decomposition method for assembly/disassembly systems with blocking and general distributions," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 272-296, June.
    3. Michael Manitz, 2015. "Analysis of assembly/disassembly queueing networks with blocking after service and general service times," Annals of Operations Research, Springer, vol. 226(1), pages 417-441, March.
    4. Beixin Xia & Binghai Zhou & Ci Chen & Lifeng Xi, 2016. "A generalized-exponential decomposition method for the analysis of inhomogeneous assembly/disassembly systems with unreliable machines and finite buffers," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 765-779, August.
    5. Kiesmüller, G.P. & Sachs, F.E., 2020. "Spare parts or buffer? How to design a transfer line with unreliable machines," European Journal of Operational Research, Elsevier, vol. 284(1), pages 121-134.
    6. Sachs, F.E. & Helber, S. & Kiesmüller, G.P., 2022. "Evaluation of Unreliable Flow Lines with Limited Buffer Capacities and Spare Part Provisioning," European Journal of Operational Research, Elsevier, vol. 302(2), pages 544-559.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    2. Sachs, F.E. & Helber, S. & Kiesmüller, G.P., 2022. "Evaluation of Unreliable Flow Lines with Limited Buffer Capacities and Spare Part Provisioning," European Journal of Operational Research, Elsevier, vol. 302(2), pages 544-559.
    3. Upset Robert & P.Van Til Robert & Sengupta Sankar, 1998. "Development of a model for a two-station serial transfer line subject to machine and buffer failure," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 4(3), pages 231-246, January.
    4. Mehmet Ulaş Koyuncuoğlu & Leyla Demir, 2021. "A comparison of combat genetic and big bang–big crunch algorithms for solving the buffer allocation problem," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1529-1546, August.
    5. Elisa Gebennini & Andrea Grassi & Cesare Fantuzzi & Stanley Gershwin & Irvin Schick, 2013. "Discrete time model for two-machine one-buffer transfer lines with restart policy," Annals of Operations Research, Springer, vol. 209(1), pages 41-65, October.
    6. Suliman, S. M. A., 2000. "A mathematical model for a buffered two-stage manufacturing cell with an unreliable transfer device," International Journal of Production Economics, Elsevier, vol. 63(1), pages 69-81, January.
    7. Shi, Chuan & Gershwin, Stanley B., 2009. "An efficient buffer design algorithm for production line profit maximization," International Journal of Production Economics, Elsevier, vol. 122(2), pages 725-740, December.
    8. Marcello Colledani & Tullio Tolio, 2011. "Performance evaluation of transfer lines with general repair times and multiple failure modes," Annals of Operations Research, Springer, vol. 182(1), pages 31-65, January.
    9. Stefan Helber & Katja Schimmelpfeng & Raik Stolletz & Svenja Lagershausen, 2011. "Using linear programming to analyze and optimize stochastic flow lines," Annals of Operations Research, Springer, vol. 182(1), pages 193-211, January.
    10. Chame, Anna & Tsallis, Constantino, 1990. "Criticality of the discrete N-vector ferromagnet in a cubic lattice with a free surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 165(1), pages 41-63.
    11. Alain Patchong & Thierry Lemoine & Gilles Kern, 2003. "Improving Car Body Production at PSA Peugeot Citroën," Interfaces, INFORMS, vol. 33(1), pages 36-49, February.
    12. Eva K. Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Large-Scale Dispensing for Emergency Response to Bioterrorism and Infectious-Disease Outbreak," Interfaces, INFORMS, vol. 36(6), pages 591-607, December.
    13. S. Göttlich & S. Kühn & J. A. Schwarz & R. Stolletz, 2016. "Approximations of time-dependent unreliable flow lines with finite buffers," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(3), pages 295-323, June.
    14. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    15. Ünsal Özdoğru & Tayfur Altiok, 2015. "Continuous material flow systems: analysis of marine ports handling bulk materials," Annals of Operations Research, Springer, vol. 231(1), pages 79-104, August.
    16. George Liberopoulos & George Kozanidis & Panagiotis Tsarouhas, 2007. "Performance Evaluation of an Automatic Transfer Line with WIP Scrapping During Long Failures," Manufacturing & Service Operations Management, INFORMS, vol. 9(1), pages 62-83, December.
    17. Andrea Matta & Francesca Simone, 2016. "Analysis of two-machine lines with finite buffer, operation-dependent and time-dependent failure modes," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1850-1862, March.
    18. Saied Samiedaluie & Vedat Verter, 2019. "The impact of specialization of hospitals on patient access to care; a queuing analysis with an application to a neurological hospital," Health Care Management Science, Springer, vol. 22(4), pages 709-726, December.
    19. Federico Nuñez-Piña & Joselito Medina-Marin & Juan Carlos Seck-Tuoh-Mora & Norberto Hernandez-Romero & Eva Selene Hernandez-Gress, 2018. "Modeling of Throughput in Production Lines Using Response Surface Methodology and Artificial Neural Networks," Complexity, Hindawi, vol. 2018, pages 1-10, January.
    20. Gürkan, G., 1997. "Simulation Optimization of Buffer Allocations in Production Lines with Unreliable Machines," Discussion Paper 1997-97, Tilburg University, Center for Economic Research.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:109:y:1998:i:1:p:24-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.