IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v38y2016i1d10.1007_s00291-015-0412-0.html
   My bibliography  Save this article

The basic train makeup problem in shunting yards

Author

Listed:
  • Nils Boysen

    (Friedrich-Schiller-Universität Jena, Lehrstuhl für Operations Management)

  • Simon Emde

    (Friedrich-Schiller-Universität Jena, Lehrstuhl für Operations Management)

  • Malte Fliedner

    (Universität Hamburg, Lehrstuhl für Operations Management)

Abstract

In shunting yards, railcars of incoming trains are uncoupled and reassembled to outbound trains. This time-critical process that employs a complex system of switches, hump hills, and classification tracks requires plenty interdependent decision problems to be solved. An elementary decision task among these is the train makeup problem, which assigns railcars of inbound freight trains to outbound trains, such that the priority values of the selected cuts of railcars are maximized and given train capacities are observed. This assignment decision is further complicated by the fact that railcars cannot facultatively be selected, but the buildup sequences of incoming trains need to be considered. This work introduces and discusses the basic train makeup problem, analyses its complexity status and develops suited exact and heuristic solution procedures that are tested in a comprehensive computational study.

Suggested Citation

  • Nils Boysen & Simon Emde & Malte Fliedner, 2016. "The basic train makeup problem in shunting yards," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 207-233, January.
  • Handle: RePEc:spr:orspec:v:38:y:2016:i:1:d:10.1007_s00291-015-0412-0
    DOI: 10.1007/s00291-015-0412-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-015-0412-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-015-0412-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Martin Weingartner & David N. Ness, 1967. "Methods for the Solution of the Multidimensional 0/1 Knapsack Problem," Operations Research, INFORMS, vol. 15(1), pages 83-103, February.
    2. Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
    3. Leo G. Kroon & Ramon M. Lentink & Alexander Schrijver, 2008. "Shunting of Passenger Train Units: An Integrated Approach," Transportation Science, INFORMS, vol. 42(4), pages 436-449, November.
    4. Ballis, Athanasios & Golias, John, 2002. "Comparative evaluation of existing and innovative rail-road freight transport terminals," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(7), pages 593-611, August.
    5. Boysen, Nils & Fliedner, Malte & Jaehn, Florian & Pesch, Erwin, 2012. "Shunting yard operations: Theoretical aspects and applications," European Journal of Operational Research, Elsevier, vol. 220(1), pages 1-14.
    6. Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
    7. He, Shiwei & Song, Rui & Chaudhry, Sohail S., 2000. "Fuzzy dispatching model and genetic algorithms for railyards operations," European Journal of Operational Research, Elsevier, vol. 124(2), pages 307-331, July.
    8. Yvonne Bontekoning & Hugo Priemus, 2004. "Breakthrough innovations in intermodal freight transport," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(5), pages 335-345, October.
    9. Tsamboulas, Dimitrios & Vrenken, Huub & Lekka, Anna-Maria, 2007. "Assessment of a transport policy potential for intermodal mode shift on a European scale," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 715-733, October.
    10. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    11. Kraft, Edwin R., 2000. "A Hump Sequencing Algorithm for Real Time Management of Train Connection Reliability," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 39(4).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruf, Moritz & Cordeau, Jean-François, 2021. "Adaptive large neighborhood search for integrated planning in railroad classification yards," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 26-51.
    2. Wang, Dian & Zhao, Jun & Peng, Qiyuan, 2022. "Optimizing the loaded train combination problem at a heavy-haul marshalling station," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruf, Moritz & Cordeau, Jean-François, 2021. "Adaptive large neighborhood search for integrated planning in railroad classification yards," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 26-51.
    2. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    3. Boysen, Nils & Fliedner, Malte & Jaehn, Florian & Pesch, Erwin, 2012. "Shunting yard operations: Theoretical aspects and applications," European Journal of Operational Research, Elsevier, vol. 220(1), pages 1-14.
    4. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    5. Stefan Fedtke & Nils Boysen, 2017. "Gantry crane and shuttle car scheduling in modern rail–rail transshipment yards," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 473-503, March.
    6. Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
    7. Boysen, Nils & Emde, Simon, 2016. "The parallel stack loading problem to minimize blockages," European Journal of Operational Research, Elsevier, vol. 249(2), pages 618-627.
    8. Wang, Dian & Zhao, Jun & Peng, Qiyuan, 2022. "Optimizing the loaded train combination problem at a heavy-haul marshalling station," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    9. Yalçın Akçay & Haijun Li & Susan Xu, 2007. "Greedy algorithm for the general multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 150(1), pages 17-29, March.
    10. Boysen, Nils & Briskorn, Dirk & Fedtke, Stefan & Schmickerath, Marcel, 2019. "Automated sortation conveyors: A survey from an operational research perspective," European Journal of Operational Research, Elsevier, vol. 276(3), pages 796-815.
    11. Janic, Milan, 2008. "An assessment of the performance of the European long intermodal freight trains (LIFTS)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1326-1339, December.
    12. Kumar, Aalok & Anbanandam, Ramesh, 2020. "Evaluating the interrelationships among inhibitors to intermodal railroad freight transport in emerging economies: A multi-stakeholder perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 559-581.
    13. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Vidal-Holguín, Carlos Julio, 2022. "A rail-road transshipment yard picture," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    14. Yanhong Feng & Hongmei Wang & Zhaoquan Cai & Mingliang Li & Xi Li, 2023. "Hybrid Learning Moth Search Algorithm for Solving Multidimensional Knapsack Problems," Mathematics, MDPI, vol. 11(8), pages 1-28, April.
    15. Ferrari, Paolo, 2018. "Some necessary conditions for the success of innovations in rail freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 747-758.
    16. Haahr, Jørgen & Lusby, Richard M., 2017. "Integrating rolling stock scheduling with train unit shunting," European Journal of Operational Research, Elsevier, vol. 259(2), pages 452-468.
    17. Alena Otto & Erwin Pesch, 2017. "Operation of shunting yards: train-to-yard assignment problem," Journal of Business Economics, Springer, vol. 87(4), pages 465-486, May.
    18. Shi, Tie & Zhou, Xuesong, 2015. "A mixed integer programming model for optimizing multi-level operations process in railroad yards," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 19-39.
    19. Setzer, Thomas & Blanc, Sebastian M., 2020. "Empirical orthogonal constraint generation for Multidimensional 0/1 Knapsack Problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 58-70.
    20. Otto, Alena & Li, Xiyu, 2020. "Product sequencing in multiple-piece-flow assembly lines," Omega, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:38:y:2016:i:1:d:10.1007_s00291-015-0412-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.