IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v41y2019i1d10.1007_s00291-018-0529-z.html
   My bibliography  Save this article

A generator for test instances of scheduling problems concerning cranes in transshipment terminals

Author

Listed:
  • Dirk Briskorn

    (University of Wuppertal)

  • Florian Jaehn

    (Helmut-Schmidt-University)

  • Andreas Wiehl

    (University of Augsburg)

Abstract

We present a test data generator that can be used for simulating processes of cranes handling containers. The concepts originate from container storage areas at seaports, but the generator can also be used for other applications, particularly for train terminals. A key aspect is that one or multiple cranes handle containers, that is, they store containers, receiving the containers in a designated handover area; retrieve containers, handing the containers over in the handover area; or reshuffle containers. We present a generic model and outline what is captured by the test data itself and what is left to be estimated by the user. Furthermore, we detail how data are generated to capture the considerable variety of container characteristics, which can be found in major terminals. Finally, we present examples to illustrate the variety of research projects supported by our test data generator.

Suggested Citation

  • Dirk Briskorn & Florian Jaehn & Andreas Wiehl, 2019. "A generator for test instances of scheduling problems concerning cranes in transshipment terminals," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 45-69, March.
  • Handle: RePEc:spr:orspec:v:41:y:2019:i:1:d:10.1007_s00291-018-0529-z
    DOI: 10.1007/s00291-018-0529-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-018-0529-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-018-0529-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Lim & Brian Rodrigues & Zhou Xu, 2007. "A m‐parallel crane scheduling problem with a non‐crossing constraint," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(2), pages 115-127, March.
    2. José Ángel González & Eva Ponce & Carlos Mataix & Javier Carrasco, 2008. "The Automatic Generation of Transhipment Plans for a Train--Train Terminal: Application to the Spanish--French Border," Transportation Planning and Technology, Taylor & Francis Journals, vol. 31(5), pages 545-567, May.
    3. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    4. Briskorn, Dirk & Emde, Simon & Boysen, Nils, 2016. "Cooperative twin-crane scheduling," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 109733, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Ng, W. C., 2005. "Crane scheduling in container yards with inter-crane interference," European Journal of Operational Research, Elsevier, vol. 164(1), pages 64-78, July.
    6. Nils Boysen & Dirk Briskorn & Simon Emde, 2015. "A decomposition heuristic for the twin robots scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(1), pages 16-22, February.
    7. Jenny Nossack & Dirk Briskorn & Erwin Pesch, 2018. "Container Dispatching and Conflict-Free Yard Crane Routing in an Automated Container Terminal," Transportation Science, INFORMS, vol. 52(5), pages 1059-1076, October.
    8. Dirk Briskorn & Malte Fliedner, 2012. "Packing chained items in aligned bins with applications to container transshipment and project scheduling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 75(3), pages 305-326, June.
    9. Ehleiter, Anne & Jaehn, Florian, 2016. "Housekeeping: Foresightful container repositioning," International Journal of Production Economics, Elsevier, vol. 179(C), pages 203-211.
    10. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    11. Kim, Kap Hwan & Lee, Keung Mo & Hwang, Hark, 2003. "Sequencing delivery and receiving operations for yard cranes in port container terminals," International Journal of Production Economics, Elsevier, vol. 84(3), pages 283-292, June.
    12. Daganzo, Carlos F., 1989. "The crane scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 23(3), pages 159-175, June.
    13. Ananthapadmanabhan Narasimhan & Udatta S. Palekar, 2002. "Analysis and Algorithms for the Transtainer Routing Problem in Container Port Operations," Transportation Science, INFORMS, vol. 36(1), pages 63-78, February.
    14. Kim, Kap Hwan & Park, Young-Man, 2004. "A crane scheduling method for port container terminals," European Journal of Operational Research, Elsevier, vol. 156(3), pages 752-768, August.
    15. Li, Wenkai & Wu, Yong & Petering, M.E.H. & Goh, Mark & Souza, Robert de, 2009. "Discrete time model and algorithms for container yard crane scheduling," European Journal of Operational Research, Elsevier, vol. 198(1), pages 165-172, October.
    16. Ballis, Athanasios & Golias, John, 2002. "Comparative evaluation of existing and innovative rail-road freight transport terminals," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(7), pages 593-611, August.
    17. Andrew Lim & Brian Rodrigues & Fei Xiao & Yi Zhu, 2004. "Crane scheduling with spatial constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(3), pages 386-406, April.
    18. Rainer Kolisch & Arno Sprecher & Andreas Drexl, 1995. "Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems," Management Science, INFORMS, vol. 41(10), pages 1693-1703, October.
    19. Kap Hwan Kim & Ki Young Kim, 1999. "An Optimal Routing Algorithm for a Transfer Crane in Port Container Terminals," Transportation Science, INFORMS, vol. 33(1), pages 17-33, February.
    20. Briskorn, Dirk & Emde, Simon & Boysen, Nils, 2016. "Cooperative twin-crane scheduling," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 80780, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    21. Iris F. A. Vis & Hector J. Carlo, 2010. "Sequencing Two Cooperating Automated Stacking Cranes in a Container Terminal," Transportation Science, INFORMS, vol. 44(2), pages 169-182, May.
    22. Nam Seok Kim & Bert Van Wee, 2009. "Assessment of CO 2 emissions for truck-only and rail-based intermodal freight systems in Europe," Transportation Planning and Technology, Taylor & Francis Journals, vol. 32(4), pages 313-333, June.
    23. Peterkofsky, Roy I. & Daganzo, Carlos F., 1990. "A branch and bound solution method for the crane scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 24(3), pages 159-172, June.
    24. Nicholas G. Hall & Marc E. Posner, 2001. "Generating Experimental Data for Computational Testing with Machine Scheduling Applications," Operations Research, INFORMS, vol. 49(6), pages 854-865, December.
    25. Lee, Der-Horng & Cao, Zhi & Meng, Qiang, 2007. "Scheduling of two-transtainer systems for loading outbound containers in port container terminals with simulated annealing algorithm," International Journal of Production Economics, Elsevier, vol. 107(1), pages 115-124, May.
    26. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    27. Peter Cramton & Yoav Shoham & Richard Steinberg (ed.), 2006. "Combinatorial Auctions," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262033429, December.
    28. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    29. Harald Rotter, 2004. "New operating concepts for intermodal transport: The mega hub in Hanover/Lehrte in Germany," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(5), pages 347-365, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lennart Zey & Dirk Briskorn & Nils Boysen, 2022. "Twin-crane scheduling during seaside workload peaks with a dedicated handshake area," Journal of Scheduling, Springer, vol. 25(1), pages 3-34, February.
    2. Dirk Briskorn & Lennart Zey, 2020. "Interference aware scheduling of triple-crossover-cranes," Journal of Scheduling, Springer, vol. 23(4), pages 465-485, August.
    3. Florian Jaehn & Andreas Wiehl, 2020. "Approximation algorithms for the twin robot scheduling problem," Journal of Scheduling, Springer, vol. 23(1), pages 117-133, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
    2. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    3. Dirk Briskorn, 2021. "Routing two stacking cranes with predetermined container sequences," Journal of Scheduling, Springer, vol. 24(4), pages 367-380, August.
    4. Anne Ehleiter & Florian Jaehn, 2018. "Scheduling crossover cranes at container terminals during seaside peak times," Journal of Heuristics, Springer, vol. 24(6), pages 899-932, December.
    5. Ehleiter, Anne & Jaehn, Florian, 2016. "Housekeeping: Foresightful container repositioning," International Journal of Production Economics, Elsevier, vol. 179(C), pages 203-211.
    6. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    7. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    8. Shell Ying Huang & Ya Li, 2017. "Yard crane scheduling to minimize total weighted vessel loading time in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 689-720, December.
    9. Lennart Zey & Dirk Briskorn & Nils Boysen, 2022. "Twin-crane scheduling during seaside workload peaks with a dedicated handshake area," Journal of Scheduling, Springer, vol. 25(1), pages 3-34, February.
    10. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    11. Gharehgozli, Amir Hossein & Vernooij, Floris Gerardus & Zaerpour, Nima, 2017. "A simulation study of the performance of twin automated stacking cranes at a seaport container terminal," European Journal of Operational Research, Elsevier, vol. 261(1), pages 108-128.
    12. Amelie Eilken, 2019. "A decomposition-based approach to the scheduling of identical automated yard cranes at container terminals," Journal of Scheduling, Springer, vol. 22(5), pages 517-541, October.
    13. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    14. Wang, Mengyao & Zhou, Chenhao & Wang, Aihu, 2022. "A cluster-based yard template design integrated with yard crane deployment using a placement heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    15. Kress, Dominik & Dornseifer, Jan & Jaehn, Florian, 2019. "An exact solution approach for scheduling cooperative gantry cranes," European Journal of Operational Research, Elsevier, vol. 273(1), pages 82-101.
    16. Liu, Wenqian & Zhu, Xiaoning & Wang, Li & Li, Siyu, 2024. "Flexible yard crane scheduling for mixed railway and road container operations in sea-rail intermodal ports with the sharing storage yard," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    17. Florian Jaehn & Andreas Wiehl, 2020. "Approximation algorithms for the twin robot scheduling problem," Journal of Scheduling, Springer, vol. 23(1), pages 117-133, February.
    18. Qin, Tianbao & Du, Yuquan & Chen, Jiang Hang & Sha, Mei, 2020. "Combining mixed integer programming and constraint programming to solve the integrated scheduling problem of container handling operations of a single vessel," European Journal of Operational Research, Elsevier, vol. 285(3), pages 884-901.
    19. Shoufeng Ma & Hongming Li & Ning Zhu & Chenyi Fu, 2021. "Stochastic programming approach for unidirectional quay crane scheduling problem with uncertainty," Journal of Scheduling, Springer, vol. 24(2), pages 137-174, April.
    20. Amir Hossein Gharehgozli & Gilbert Laporte & Yugang Yu & René de Koster, 2015. "Scheduling Twin Yard Cranes in a Container Block," Transportation Science, INFORMS, vol. 49(3), pages 686-705, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:41:y:2019:i:1:d:10.1007_s00291-018-0529-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.