IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v162y2022ics1366554522001089.html
   My bibliography  Save this article

Optimizing the loaded train combination problem at a heavy-haul marshalling station

Author

Listed:
  • Wang, Dian
  • Zhao, Jun
  • Peng, Qiyuan

Abstract

In this paper, we address a loaded train combination problem at a heavy-haul marshalling station. This problem lies on assigning/combining loaded inbound trains to/into heavier outbound trains, and determining the actual departure time of outbound trains. By using a time-discretized modelling technique, we formulate the studied problem as a mixed integer linear programming model, to minimize the weighted sum of the total railcar dwell time and the total railcar extra transfer time. Several variable fixing rules and valid inequalities are designed to strengthen the proposed model. An iterated search algorithm, in which an intensification search and a neighborhood search are executed iteratively, is developed to solve large-scale problems efficiently. In the intensification search, the proposed model is reduced into a simpler assignment model to compute an incumbent solution, by fixing the departure time of outbound trains. In the neighborhood search, a rolling horizon heuristic is designed to improve the incumbent solution, by dividing the departure period of outbound trains into multiple overlapped shorter stages, and re-optimizing the solution in each stage while maintaining that in other stages unchanged. Different scales of instances, randomly generated from a real-world marshalling station in one of the busiest Chinese heavy-haul railways, are used to test the proposed approaches. Computational results demonstrate that our algorithm computes (near-)optimal solutions (with a maximum relative gap of 1.73% only) for all the tested instances within a maximum computation time shorter than 13 min. Our approach can also find better solutions (with an average improvement rate of 3.27%) in shorter computation time, when compared to the empirical method used in practice.

Suggested Citation

  • Wang, Dian & Zhao, Jun & Peng, Qiyuan, 2022. "Optimizing the loaded train combination problem at a heavy-haul marshalling station," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:transe:v:162:y:2022:i:c:s1366554522001089
    DOI: 10.1016/j.tre.2022.102717
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554522001089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krumke, Sven O. & Thielen, Clemens, 2013. "The generalized assignment problem with minimum quantities," European Journal of Operational Research, Elsevier, vol. 228(1), pages 46-55.
    2. Boysen, Nils & Emde, Simon & Fliedner, Malte, 2016. "The basic train makeup problem in shunting yards," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79432, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Nils Boysen & Simon Emde & Malte Fliedner, 2016. "The basic train makeup problem in shunting yards," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 207-233, January.
    4. Chen, Chongshuang & Dollevoet, Twan & Zhao, Jun, 2018. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 1-30.
    5. Yin, Jiateng & D’Ariano, Andrea & Wang, Yihui & Yang, Lixing & Tang, Tao, 2021. "Timetable coordination in a rail transit network with time-dependent passenger demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 183-202.
    6. Armin Fügenschuh & Henning Homfeld & Hanno Schülldorf, 2015. "Single-Car Routing in Rail Freight Transport," Transportation Science, INFORMS, vol. 49(1), pages 130-148, February.
    7. Wang, Dian & Zhao, Jun & D’Ariano, Andrea & Peng, Qiyuan, 2021. "Simultaneous node and link districting in transportation networks: Model, algorithms and railway application," European Journal of Operational Research, Elsevier, vol. 292(1), pages 73-94.
    8. Jaehn, Florian & Rieder, Johannes & Wiehl, Andreas, 2015. "Single-stage shunting minimizing weighted departure times," Omega, Elsevier, vol. 52(C), pages 133-141.
    9. Ravindra K. Ahuja & Krishna C. Jha & Jian Liu, 2007. "Solving Real-Life Railroad Blocking Problems," Interfaces, INFORMS, vol. 37(5), pages 404-419, October.
    10. Ruf, Moritz & Cordeau, Jean-François, 2021. "Adaptive large neighborhood search for integrated planning in railroad classification yards," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 26-51.
    11. Boysen, Nils & Fliedner, Malte & Jaehn, Florian & Pesch, Erwin, 2012. "Shunting yard operations: Theoretical aspects and applications," European Journal of Operational Research, Elsevier, vol. 220(1), pages 1-14.
    12. Shi, Tie & Zhou, Xuesong, 2015. "A mixed integer programming model for optimizing multi-level operations process in railroad yards," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 19-39.
    13. Ruiye Su & Leishan Zhou & Jinjin Tang, 2015. "Locomotive Schedule Optimization for Da-qin Heavy Haul Railway," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, December.
    14. Markus Bohlin & Sara Gestrelius & Florian Dahms & Matúš Mihalák & Holger Flier, 2016. "Optimization Methods for Multistage Freight Train Formation," Transportation Science, INFORMS, vol. 50(3), pages 823-840, August.
    15. He, Shiwei & Song, Rui & Chaudhry, Sohail S., 2000. "Fuzzy dispatching model and genetic algorithms for railyards operations," European Journal of Operational Research, Elsevier, vol. 124(2), pages 307-331, July.
    16. Cynthia Barnhart & Hong Jin & Pamela H. Vance, 2000. "Railroad Blocking: A Network Design Application," Operations Research, INFORMS, vol. 48(4), pages 603-614, August.
    17. Zhang, Jinchuan & Yang, Hao & Wei, Yuguang & Shang, Pan, 2016. "The empty wagons adjustment algorithm of Chinese heavy-haul railway," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 91-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinyu Zhuo & Weiya Chen & Ziyue Yuan, 2023. "Optimizing Mixed Group Train Operation for Heavy-Haul Railway Transportation: A Case Study in China," Mathematics, MDPI, vol. 11(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruf, Moritz & Cordeau, Jean-François, 2021. "Adaptive large neighborhood search for integrated planning in railroad classification yards," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 26-51.
    2. Chen, Chongshuang & Dollevoet, Twan & Zhao, Jun, 2018. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 1-30.
    3. Chen, C. & Dollevoet, T.A.B. & Zhao, J., 2017. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Econometric Institute Research Papers EI-2017-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Scheffler, Martin & Neufeld, Janis S. & Hölscher, Michael, 2020. "An MIP-based heuristic solution approach for the locomotive assignment problem focussing on (dis-)connecting processes," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 64-80.
    5. Ralf Borndörfer & Torsten Klug & Thomas Schlechte & Armin Fügenschuh & Thilo Schang & Hanno Schülldorf, 2016. "The Freight Train Routing Problem for Congested Railway Networks with Mixed Traffic," Transportation Science, INFORMS, vol. 50(2), pages 408-423, May.
    6. Markus Bohlin & Sara Gestrelius & Florian Dahms & Matúš Mihalák & Holger Flier, 2016. "Optimization Methods for Multistage Freight Train Formation," Transportation Science, INFORMS, vol. 50(3), pages 823-840, August.
    7. Boliang Lin & Jingsong Duan & Jiaxi Wang & Min Sun & Wengao Peng & Chang Liu & Jie Xiao & Siqi Liu & Jianping Wu, 2018. "A study of the car-to-train assignment problem for rail express cargos in the scheduled and unscheduled train services network," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-18, October.
    8. Alena Otto & Erwin Pesch, 2017. "Operation of shunting yards: train-to-yard assignment problem," Journal of Business Economics, Springer, vol. 87(4), pages 465-486, May.
    9. Shi, Tie & Zhou, Xuesong, 2015. "A mixed integer programming model for optimizing multi-level operations process in railroad yards," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 19-39.
    10. Schwerdfeger, Stefan & Otto, Alena & Boysen, Nils, 2021. "Rail platooning: Scheduling trains along a rail corridor with rapid-shunting facilities," European Journal of Operational Research, Elsevier, vol. 294(2), pages 760-778.
    11. Zhimei Wang & Avishai Ceder, 2017. "Efficient design of freight train operation with double-hump yards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1600-1619, December.
    12. G Lulli & U Pietropaoli & N Ricciardi, 2011. "Service network design for freight railway transportation: the Italian case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2107-2119, December.
    13. Nils Boysen & Simon Emde & Malte Fliedner, 2016. "The basic train makeup problem in shunting yards," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 207-233, January.
    14. Roy, Debjit & van Ommeren, Jan-Kees & de Koster, René & Gharehgozli, Amir, 2022. "Modeling landside container terminal queues: Exact analysis and approximations," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 73-102.
    15. Yin, Jiateng & Pu, Fan & Yang, Lixing & D’Ariano, Andrea & Wang, Zhouhong, 2023. "Integrated optimization of rolling stock allocation and train timetables for urban rail transit networks: A benders decomposition approach," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    16. Bagheri, Morteza & Saccomanno, Frank & Fu, Liping, 2012. "Modeling hazardous materials risks for different train make-up plans," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 907-918.
    17. Manish Verma & Vedat Verter & Michel Gendreau, 2011. "A Tactical Planning Model for Railroad Transportation of Dangerous Goods," Transportation Science, INFORMS, vol. 45(2), pages 163-174, May.
    18. Khaled, Abdullah A. & Jin, Mingzhou & Clarke, David B. & Hoque, Mohammad A., 2015. "Train design and routing optimization for evaluating criticality of freight railroad infrastructures," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 71-84.
    19. Boliang Lin & Xingkui Li & Zexi Zhang & Yinan Zhao, 2019. "Optimizing Transport Scheme of High Value-Added Shipments in Regions without Express Train Services," Sustainability, MDPI, vol. 11(21), pages 1-21, November.
    20. Jin, Jian Gang & Zhao, Jun & Lee, Der-Horng, 2013. "A column generation based approach for the Train Network Design Optimization problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:162:y:2022:i:c:s1366554522001089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.