IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v23y2023i1d10.1007_s12351-023-00759-9.html
   My bibliography  Save this article

A ground crew shift rostering model for Santiago International Airport

Author

Listed:
  • Juan P. Cavada

    (Universidad de Chile)

  • Cristián E. Cortés

    (Universidad de Chile
    Instituto Sistemas Complejos de Ingeniería (ISCI))

  • Gustavo Henríquez

    (Universidad de Chile)

  • Pablo A. Rey

    (Universidad Tecnológica Metropolitana)

Abstract

A mixed integer linear programming model is presented for personnel planning of ground handling crews at Santiago International Airport in Chile. The model generates employee shift rosters for an entire month assuming heterogeneous workers (to reflect different skills demanded at specific times) that satisfy various constraints relating to legal restrictions, personnel demand, worker welfare criteria (fair shift assignments, elimination of undesirable shift patterns), and pre-existing work group assignments for achieving task synergies. Solutions are generated using a commercial solver, standardizing the shift assignment process and improving both personnel availability and worker welfare by objective standards compared to previous manual method solutions.

Suggested Citation

  • Juan P. Cavada & Cristián E. Cortés & Gustavo Henríquez & Pablo A. Rey, 2023. "A ground crew shift rostering model for Santiago International Airport," Operational Research, Springer, vol. 23(1), pages 1-26, March.
  • Handle: RePEc:spr:operea:v:23:y:2023:i:1:d:10.1007_s12351-023-00759-9
    DOI: 10.1007/s12351-023-00759-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-023-00759-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-023-00759-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiun-Yan Shiau & Ming-Kung Huang & Chu-Yi Huang, 2020. "A Hybrid Personnel Scheduling Model for Staff Rostering Problems," Mathematics, MDPI, vol. 8(10), pages 1-20, October.
    2. Wolbeck, Lena Antonia, 2019. "Fairness aspects in personnel scheduling," Discussion Papers 2019/16, Free University Berlin, School of Business & Economics.
    3. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    4. Gérard, Matthieu & Clautiaux, François & Sadykov, Ruslan, 2016. "Column generation based approaches for a tour scheduling problem with a multi-skill heterogeneous workforce," European Journal of Operational Research, Elsevier, vol. 252(3), pages 1019-1030.
    5. María I. Restrepo & Bernard Gendron & Louis-Martin Rousseau, 2016. "Branch-and-Price for Personalized Multiactivity Tour Scheduling," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 334-350, May.
    6. David Rea & Craig Froehle & Suzanne Masterson & Brian Stettler & Gregory Fermann & Arthur Pancioli, 2021. "Unequal but Fair: Incorporating Distributive Justice in Operational Allocation Models," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2304-2320, July.
    7. Lishun Zeng & Mingyu Zhao & Yangfan Liu, 2019. "Airport ground workforce planning with hierarchical skills: a new formulation and branch-and-price approach," Annals of Operations Research, Springer, vol. 275(1), pages 245-258, April.
    8. Torsten Fahle & Wolfgang Vermöhlen, 2016. "Fair Cyclic Roster Planning—A Case Study for a Large European Airport," Operations Research Proceedings, in: Marco Lübbecke & Arie Koster & Peter Letmathe & Reinhard Madlener & Britta Peis & Grit Walther (ed.), Operations Research Proceedings 2014, edition 1, pages 129-135, Springer.
    9. Marie-Claude Côté & Bernard Gendron & Louis-Martin Rousseau, 2013. "Grammar-Based Column Generation for Personalized Multi-Activity Shift Scheduling," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 461-474, August.
    10. Manuel Kutschka & Jörg Herbers, 2016. "An Insight to Aviation: Rostering Ground Personnel in Practice," Operations Research Proceedings, in: Marco Lübbecke & Arie Koster & Peter Letmathe & Reinhard Madlener & Britta Peis & Grit Walther (ed.), Operations Research Proceedings 2014, edition 1, pages 349-355, Springer.
    11. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    12. Christopher N. Gross & Andreas Fügener & Jens O. Brunner, 2018. "Online rescheduling of physicians in hospitals," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 296-328, June.
    13. D. Dowling & M. Krishnamoorthy & H. Mackenzie & D. Sier, 1997. "Staff rostering at a large international airport," Annals of Operations Research, Springer, vol. 72(0), pages 125-147, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferdinand Kiermaier & Markus Frey & Jonathan F. Bard, 2020. "The flexible break assignment problem for large tour scheduling problems with an application to airport ground handlers," Journal of Scheduling, Springer, vol. 23(2), pages 177-209, April.
    2. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    3. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    4. Lishun Zeng & Mingyu Zhao & Yangfan Liu, 2019. "Airport ground workforce planning with hierarchical skills: a new formulation and branch-and-price approach," Annals of Operations Research, Springer, vol. 275(1), pages 245-258, April.
    5. Ivan Kovynyov & Ralf Mikut, 2019. "Digital technologies in airport ground operations," Netnomics, Springer, vol. 20(1), pages 1-30, April.
    6. Lin, Shih-Wei & Ying, Kuo-Ching, 2014. "Minimizing shifts for personnel task scheduling problems: A three-phase algorithm," European Journal of Operational Research, Elsevier, vol. 237(1), pages 323-334.
    7. Wu, Zhiying & Xu, Guoning & Chen, Qingxin & Mao, Ning, 2023. "Two stochastic optimization methods for shift design with uncertain demand," Omega, Elsevier, vol. 115(C).
    8. Sana Dahmen & Monia Rekik & François Soumis, 2018. "An implicit model for multi-activity shift scheduling problems," Journal of Scheduling, Springer, vol. 21(3), pages 285-304, June.
    9. Wang, Wenshu & Xie, Kexin & Guo, Siqi & Li, Weixing & Xiao, Fan & Liang, Zhe, 2023. "A shift-based model to solve the integrated staff rostering and task assignment problem with real-world requirements," European Journal of Operational Research, Elsevier, vol. 310(1), pages 360-378.
    10. Pieter Smet & Annelies Lejon & Greet Vanden Berghe, 2021. "Demand smoothing in shift design," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 457-484, June.
    11. Mark W. Isken & Osman T. Aydas, 2022. "A tactical multi-week implicit tour scheduling model with applications in healthcare," Health Care Management Science, Springer, vol. 25(4), pages 551-573, December.
    12. Julie Poullet & Axel Parmentier, 2020. "Shift Planning Under Delay Uncertainty at Air France: A Vehicle-Scheduling Problem with Outsourcing," Transportation Science, INFORMS, vol. 54(4), pages 956-972, July.
    13. Dalia Attia & Reinhard Bürgy & Guy Desaulniers & François Soumis, 2019. "A decomposition-based heuristic for large employee scheduling problems with inter-department transfers," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 325-357, December.
    14. David Rea & Craig Froehle & Suzanne Masterson & Brian Stettler & Gregory Fermann & Arthur Pancioli, 2021. "Unequal but Fair: Incorporating Distributive Justice in Operational Allocation Models," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2304-2320, July.
    15. Ellen Bockstal & Broos Maenhout, 2019. "A study on the impact of prioritising emergency department arrivals on the patient waiting time," Health Care Management Science, Springer, vol. 22(4), pages 589-614, December.
    16. Florian Mischek & Nysret Musliu, 2019. "Integer programming model extensions for a multi-stage nurse rostering problem," Annals of Operations Research, Springer, vol. 275(1), pages 123-143, April.
    17. Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2016. "A Benders decomposition-based matheuristic for the Cardinality Constrained Shift Design Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 385-397.
    18. Emir Demirović & Nysret Musliu & Felix Winter, 2019. "Modeling and solving staff scheduling with partial weighted maxSAT," Annals of Operations Research, Springer, vol. 275(1), pages 79-99, April.
    19. Jens Brunner & Jonathan Bard & Rainer Kolisch, 2009. "Flexible shift scheduling of physicians," Health Care Management Science, Springer, vol. 12(3), pages 285-305, September.
    20. Melanie Erhard, 2021. "Flexible staffing of physicians with column generation," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 212-252, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:23:y:2023:i:1:d:10.1007_s12351-023-00759-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.