IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v30y2018i1d10.1007_s10696-016-9274-2.html
   My bibliography  Save this article

Online rescheduling of physicians in hospitals

Author

Listed:
  • Christopher N. Gross

    (University of Augsburg)

  • Andreas Fügener

    (University of Cologne)

  • Jens O. Brunner

    (University of Augsburg)

Abstract

Scheduling physicians is a complex task. Legal requirements, different levels of qualification, and preferences for different working hours increase the difficulty of determining a solution that simultaneously fulfills all requirements. Unplanned absences, e.g., due to illness, additionally drive the complexity. In this study, we discuss an approach to deal with the following trade-off. Changes to the existing plan should be kept as small as possible. However, an updated plan should still meet the requirements regarding work regulation, qualifications needed, and physician preferences. We present a mixed-integer linear programming model to create updated duty and workstation rosters simultaneously following absences of scheduled personnel. To enable a comparison with previous sequential approaches, we separate our model into two models for the duty and workstation roster which generate plans sequentially. In a case study, we apply our integrated and sequential models to real-life data from a German university hospital with 133 physicians, 17 duties, and 20 workstations. We consider a planning horizon of 4 weeks and reschedule physicians on each day for three different cost settings for the trade-off between plan quality (in terms of preferences, fairness, coverage and training) and plan stability, resulting in a total of 4201 model runs. We demonstrate that our integrated model can achieve near-optimal results with reasonable computational efforts. In each of these runs our model reschedules physicians within 1–21 s. We run the sequential models on the same data, but for only one cost setting, resulting in 1401 runs. The results indicate that our integrated model manages to respect interdependencies between duty and workstation roster whereas the sequential models will always optimize for the plan which is created first. Overall, results indicate that our integrated model parameters allow managing the trade-off between plan quality goals and plan stability.

Suggested Citation

  • Christopher N. Gross & Andreas Fügener & Jens O. Brunner, 2018. "Online rescheduling of physicians in hospitals," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 296-328, June.
  • Handle: RePEc:spr:flsman:v:30:y:2018:i:1:d:10.1007_s10696-016-9274-2
    DOI: 10.1007/s10696-016-9274-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-016-9274-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-016-9274-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Margarida Moz & Margarida Pato, 2003. "An Integer Multicommodity Flow Model Applied to the Rerostering of Nurse Schedules," Annals of Operations Research, Springer, vol. 119(1), pages 285-301, March.
    2. Sanja Petrovic & Greet Berghe, 2012. "A comparison of two approaches to nurse rostering problems," Annals of Operations Research, Springer, vol. 194(1), pages 365-384, April.
    3. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    4. Jens Brunner & Jonathan Bard & Rainer Kolisch, 2009. "Flexible shift scheduling of physicians," Health Care Management Science, Springer, vol. 12(3), pages 285-305, September.
    5. Margarida Moz & Margarida Pato, 2004. "Solving the Problem of Rerostering Nurse Schedules with Hard Constraints: New Multicommodity Flow Models," Annals of Operations Research, Springer, vol. 128(1), pages 179-197, April.
    6. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2011. "The Price of Fairness," Operations Research, INFORMS, vol. 59(1), pages 17-31, February.
    7. A Gunawan & H C Lau, 2013. "Master physician scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(3), pages 410-425, March.
    8. Stolletz, Raik & Brunner, Jens O., 2012. "Fair optimization of fortnightly physician schedules with flexible shifts," European Journal of Operational Research, Elsevier, vol. 219(3), pages 622-629.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pieter Smet & Annelies Lejon & Greet Vanden Berghe, 2021. "Demand smoothing in shift design," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 457-484, June.
    2. Hassani, Rachid & Desaulniers, Guy & Elhallaoui, Issmail, 2021. "Real-time bi-objective personnel re-scheduling in the retail industry," European Journal of Operational Research, Elsevier, vol. 293(1), pages 93-108.
    3. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    4. Shaowen Lan & Wenjuan Fan & Kaining Shao & Shanlin Yang & Panos M. Pardalos, 2022. "A column-generation-based approach for an integrated service planning and physician scheduling problem considering re-consultation," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3446-3476, December.
    5. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    6. Juan P. Cavada & Cristián E. Cortés & Gustavo Henríquez & Pablo A. Rey, 2023. "A ground crew shift rostering model for Santiago International Airport," Operational Research, Springer, vol. 23(1), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Shuling & Hall, Nicholas G., 2021. "Fatigue, personnel scheduling and operations: Review and research opportunities," European Journal of Operational Research, Elsevier, vol. 295(3), pages 807-822.
    2. Wolbeck, Lena & Kliewer, Natalia & Marques, Inês, 2020. "Fair shift change penalization scheme for nurse rescheduling problems," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1121-1135.
    3. Wolbeck, Lena Antonia, 2019. "Fairness aspects in personnel scheduling," Discussion Papers 2019/16, Free University Berlin, School of Business & Economics.
    4. Paola Cappanera & Filippo Visintin & Roberta Rossi, 2022. "The emergency department physician rostering problem: obtaining equitable solutions via network optimization," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 916-959, December.
    5. Farzad Zaerpour & Marco Bijvank & Huiyin Ouyang & Zhankun Sun, 2022. "Scheduling of Physicians with Time‐Varying Productivity Levels in Emergency Departments," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 645-667, February.
    6. Toni I. Wickert & Alberto F. Kummer Neto & Márcio M. Boniatti & Luciana S. Buriol, 2021. "An integer programming approach for the physician rostering problem," Annals of Operations Research, Springer, vol. 302(2), pages 363-390, July.
    7. Melanie Erhard, 2021. "Flexible staffing of physicians with column generation," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 212-252, March.
    8. Sanja Petrovic, 2019. "“You have to get wet to learn how to swim” applied to bridging the gap between research into personnel scheduling and its implementation in practice," Annals of Operations Research, Springer, vol. 275(1), pages 161-179, April.
    9. Volland, Jonas & Fügener, Andreas & Brunner, Jens O., 2017. "A column generation approach for the integrated shift and task scheduling problem of logistics assistants in hospitals," European Journal of Operational Research, Elsevier, vol. 260(1), pages 316-334.
    10. Damcı-Kurt, Pelin & Zhang, Minjiao & Marentay, Brian & Govind, Nirmal, 2019. "Improving physician schedules by leveraging equalization: Cases from hospitals in U.S," Omega, Elsevier, vol. 85(C), pages 182-193.
    11. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    12. Jan Schoenfelder & Christian Pfefferlen, 2018. "Decision Support for the Physician Scheduling Process at a German Hospital," Service Science, INFORMS, vol. 10(3), pages 215-229, September.
    13. Erhard, Melanie & Schoenfelder, Jan & Fügener, Andreas & Brunner, Jens O., 2018. "State of the art in physician scheduling," European Journal of Operational Research, Elsevier, vol. 265(1), pages 1-18.
    14. Maenhout, Broos & Vanhoucke, Mario, 2018. "A perturbation matheuristic for the integrated personnel shift and task re-scheduling problem," European Journal of Operational Research, Elsevier, vol. 269(3), pages 806-823.
    15. Hassani, Rachid & Desaulniers, Guy & Elhallaoui, Issmail, 2021. "Real-time bi-objective personnel re-scheduling in the retail industry," European Journal of Operational Research, Elsevier, vol. 293(1), pages 93-108.
    16. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    17. Dina Bentayeb & Nadia Lahrichi & Louis-Martin Rousseau, 2023. "On integrating patient appointment grids and technologist schedules in a radiology center," Health Care Management Science, Springer, vol. 26(1), pages 62-78, March.
    18. Wang, Wenshu & Xie, Kexin & Guo, Siqi & Li, Weixing & Xiao, Fan & Liang, Zhe, 2023. "A shift-based model to solve the integrated staff rostering and task assignment problem with real-world requirements," European Journal of Operational Research, Elsevier, vol. 310(1), pages 360-378.
    19. Renata Mansini & Roberto Zanotti, 2020. "Optimizing the physician scheduling problem in a large hospital ward," Journal of Scheduling, Springer, vol. 23(3), pages 337-361, June.
    20. Tohidi, Mohammad & Kazemi Zanjani, Masoumeh & Contreras, Ivan, 2021. "A physician planning framework for polyclinics under uncertainty," Omega, Elsevier, vol. 101(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:30:y:2018:i:1:d:10.1007_s10696-016-9274-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.