IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v33y2021i2d10.1007_s10696-020-09380-w.html
   My bibliography  Save this article

Demand smoothing in shift design

Author

Listed:
  • Pieter Smet

    (KU Leuven)

  • Annelies Lejon

    (KU Leuven)

  • Greet Vanden Berghe

    (KU Leuven)

Abstract

Shift design is an essential step in workforce planning in which staffing requirements must be obtained for a set of shifts which best cover forecasted demand given as a demand pattern. Existing models for this challenging optimization problem perform well when these demand patterns fluctuate around an average without any strong variability in demand. However, when demand is irregular, these models inevitably generate solutions with a significant amount of over—or understaffing or an excessive use of short shifts. The present paper explores a strategy which involves modifying the demand patterns such that the variable workload may be better matched using an acceptable number of shifts. Integer programming is employed to solve the resulting optimization problem. A computational study of the proposed model reveals interactions between different problem parameters which control the scope of demand modification and the type of the selected shifts. Moreover, the potential impact from an economic point-of-view is discussed and the time before profitability of the approach is evaluated. These insights enable operations management to better understand the trade-off between solution quality and different types of flexibility which may be realized in an organization.

Suggested Citation

  • Pieter Smet & Annelies Lejon & Greet Vanden Berghe, 2021. "Demand smoothing in shift design," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 457-484, June.
  • Handle: RePEc:spr:flsman:v:33:y:2021:i:2:d:10.1007_s10696-020-09380-w
    DOI: 10.1007/s10696-020-09380-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-020-09380-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-020-09380-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linda V. Green & Peter J. Kolesar, 1995. "On the Accuracy of the Simple Peak Hour Approximation for Markovian Queues," Management Science, INFORMS, vol. 41(8), pages 1353-1370, August.
    2. Musliu, Nysret & Schaerf, Andrea & Slany, Wolfgang, 2004. "Local search for shift design," European Journal of Operational Research, Elsevier, vol. 153(1), pages 51-64, February.
    3. Komarudin, & Guerry, Marie-Anne & De Feyter, Tim & Vanden Berghe, Greet, 2013. "The roster quality staffing problem – A methodology for improving the roster quality by modifying the personnel structure," European Journal of Operational Research, Elsevier, vol. 230(3), pages 551-562.
    4. Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2016. "A Benders decomposition-based matheuristic for the Cardinality Constrained Shift Design Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 385-397.
    5. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    6. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    7. Jörg Herbers, 2006. "Representing Labor Demands in Airport Ground Staff Scheduling," Operations Research Proceedings, in: Hans-Dietrich Haasis & Herbert Kopfer & Jörn Schönberger (ed.), Operations Research Proceedings 2005, pages 15-20, Springer.
    8. Alex Bonutti & Sara Ceschia & Fabio De Cesco & Nysret Musliu & Andrea Schaerf, 2017. "Modeling and solving a real-life multi-skill shift design problem," Annals of Operations Research, Springer, vol. 252(2), pages 365-382, May.
    9. Burke, Edmund K. & Curtois, Tim, 2014. "New approaches to nurse rostering benchmark instances," European Journal of Operational Research, Elsevier, vol. 237(1), pages 71-81.
    10. Robert R. Love & James M. Hoey, 1990. "Management Science Improves Fast-Food Operations," Interfaces, INFORMS, vol. 20(2), pages 21-29, April.
    11. N. Llort & A. Lusa & C. Martínez-Costa & M. Mateo, 2019. "A decision support system and a mathematical model for strategic workforce planning in consultancies," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 497-523, June.
    12. Burgess, P.A., 2007. "Optimal shift duration and sequence: recommended approach for short-term emergency response activations for public health and emergency management," American Journal of Public Health, American Public Health Association, vol. 97(S1), pages 88-92.
    13. Eyjólfur Ásgeirsson, 2014. "Bridging the gap between self schedules and feasible schedules in staff scheduling," Annals of Operations Research, Springer, vol. 218(1), pages 51-69, July.
    14. Dori Hulst & Dick Hertog & Wim Nuijten, 2017. "Robust shift generation in workforce planning," Computational Management Science, Springer, vol. 14(1), pages 115-134, January.
    15. De Bruecker, Philippe & Van den Bergh, Jorne & Beliën, Jeroen & Demeulemeester, Erik, 2015. "Workforce planning incorporating skills: State of the art," European Journal of Operational Research, Elsevier, vol. 243(1), pages 1-16.
    16. Youngbum Hur & Jonathan F. Bard & Markus Frey & Ferdinand Kiermaier, 2019. "An investigation of shift and break flexibility with real-time break assignments using a rolling horizon approach," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 174-211, March.
    17. Maenhout, Broos & Vanhoucke, Mario, 2013. "Reconstructing nurse schedules: Computational insights in the problem size parameters," Omega, Elsevier, vol. 41(5), pages 903-918.
    18. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    19. E. Veen & J. L. Hurink & J. M. J. Schutten & S. T. Uijland, 2016. "A flexible iterative improvement heuristic to support creation of feasible shift rosters in self-rostering," Annals of Operations Research, Springer, vol. 239(1), pages 189-206, April.
    20. Luca Di Gaspero & Johannes Gärtner & Guy Kortsarz & Nysret Musliu & Andrea Schaerf & Wolfgang Slany, 2007. "The minimum shift design problem," Annals of Operations Research, Springer, vol. 155(1), pages 79-105, November.
    21. Christopher N. Gross & Andreas Fügener & Jens O. Brunner, 2018. "Online rescheduling of physicians in hospitals," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 296-328, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zhiying & Xu, Guoning & Chen, Qingxin & Mao, Ning, 2023. "Two stochastic optimization methods for shift design with uncertain demand," Omega, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhiying & Xu, Guoning & Chen, Qingxin & Mao, Ning, 2023. "Two stochastic optimization methods for shift design with uncertain demand," Omega, Elsevier, vol. 115(C).
    2. Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2016. "A Benders decomposition-based matheuristic for the Cardinality Constrained Shift Design Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 385-397.
    3. Oyku Ahipasaoglu & Nesim Erkip & Oya Ekin Karasan, 2019. "The venue management problem: setting staffing levels, shifts and shift schedules at concession stands," Journal of Scheduling, Springer, vol. 22(1), pages 69-83, February.
    4. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    5. Arjan Akkermans & Gerhard Post & Marc Uetz, 2021. "Solving the shift and break design problem using integer linear programming," Annals of Operations Research, Springer, vol. 302(2), pages 341-362, July.
    6. Caballini, Claudia & Paolucci, Massimo, 2020. "A rostering approach to minimize health risks for workers: An application to a container terminal in the Italian port of Genoa," Omega, Elsevier, vol. 95(C).
    7. Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2015. "A Benders decomposition-based Matheuristic for the Cardinality Constrained Shift Design Problem," Discussion Papers on Economics 9/2015, University of Southern Denmark, Department of Economics.
    8. Bürgy, Reinhard & Michon-Lacaze, Hélène & Desaulniers, Guy, 2019. "Employee scheduling with short demand perturbations and extensible shifts," Omega, Elsevier, vol. 89(C), pages 177-192.
    9. Dalia Attia & Reinhard Bürgy & Guy Desaulniers & François Soumis, 2019. "A decomposition-based heuristic for large employee scheduling problems with inter-department transfers," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 325-357, December.
    10. Florian Mischek & Nysret Musliu, 2019. "Integer programming model extensions for a multi-stage nurse rostering problem," Annals of Operations Research, Springer, vol. 275(1), pages 123-143, April.
    11. Emir Demirović & Nysret Musliu & Felix Winter, 2019. "Modeling and solving staff scheduling with partial weighted maxSAT," Annals of Operations Research, Springer, vol. 275(1), pages 79-99, April.
    12. Sanja Petrovic, 2019. "“You have to get wet to learn how to swim” applied to bridging the gap between research into personnel scheduling and its implementation in practice," Annals of Operations Research, Springer, vol. 275(1), pages 161-179, April.
    13. Wolbeck, Lena & Kliewer, Natalia & Marques, Inês, 2020. "Fair shift change penalization scheme for nurse rescheduling problems," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1121-1135.
    14. Fang, Kan & Wang, Shijin & Pinedo, Michael L. & Chen, Lin & Chu, Feng, 2021. "A combinatorial Benders decomposition algorithm for parallel machine scheduling with working-time restrictions," European Journal of Operational Research, Elsevier, vol. 291(1), pages 128-146.
    15. Ferdinand Kiermaier & Markus Frey & Jonathan F. Bard, 2020. "The flexible break assignment problem for large tour scheduling problems with an application to airport ground handlers," Journal of Scheduling, Springer, vol. 23(2), pages 177-209, April.
    16. De Bruecker, Philippe & Beliën, Jeroen & Van den Bergh, Jorne & Demeulemeester, Erik, 2018. "A three-stage mixed integer programming approach for optimizing the skill mix and training schedules for aircraft maintenance," European Journal of Operational Research, Elsevier, vol. 267(2), pages 439-452.
    17. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
    18. Lai, David S.W. & Leung, Janny M.Y. & Dullaert, Wout & Marques, Inês, 2020. "A graph-based formulation for the shift rostering problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 285-300.
    19. Lin, Shih-Wei & Ying, Kuo-Ching, 2014. "Minimizing shifts for personnel task scheduling problems: A three-phase algorithm," European Journal of Operational Research, Elsevier, vol. 237(1), pages 323-334.
    20. Erhard, Melanie & Schoenfelder, Jan & Fügener, Andreas & Brunner, Jens O., 2018. "State of the art in physician scheduling," European Journal of Operational Research, Elsevier, vol. 265(1), pages 1-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:33:y:2021:i:2:d:10.1007_s10696-020-09380-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.