IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i13d10.1007_s11069-024-06641-x.html
   My bibliography  Save this article

Scalable approach to create annotated disaster image database supporting AI-driven damage assessment

Author

Listed:
  • Sun Ho Ro

    (Rutgers University)

  • Jie Gong

    (Rutgers University)

Abstract

As coastal populations surge, the devastation caused by hurricanes becomes more catastrophic. Understanding the extent of the damage is essential as this knowledge helps shape our plans and decisions to reduce the effects of hurricanes. While community and property-level damage post-hurricane damage assessments are common, evaluations at the building component level, such as roofs, windows, and walls, are rarely conducted. This scarcity is attributed to the challenges inherent in automating precise object detections. Moreover, a significant disconnection exists between manual damage assessments, typically logged-in spreadsheets, and images of the damaged buildings. Extracting historical damage insights from these datasets becomes arduous without a digital linkage. This study introduces an innovative workflow anchored in state-of-the-art deep learning models to address these gaps. The methodology offers enhanced image annotation capabilities by leveraging large-scale pre-trained instance segmentation models and accurate damaged building component segmentation from transformer-based fine-tuning detection models. Coupled with a novel data repository structure, this study merges the segmentation mask of hurricane-affected components with manual damage assessment data, heralding a transformative approach to hurricane-induced building damage assessments and visualization.

Suggested Citation

  • Sun Ho Ro & Jie Gong, 2024. "Scalable approach to create annotated disaster image database supporting AI-driven damage assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11693-11712, October.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:13:d:10.1007_s11069-024-06641-x
    DOI: 10.1007/s11069-024-06641-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06641-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06641-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:13:d:10.1007_s11069-024-06641-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.