IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v142y2020ics016794731930163x.html
   My bibliography  Save this article

Uncertainty quantification using Bayesian neural networks in classification: Application to biomedical image segmentation

Author

Listed:
  • Kwon, Yongchan
  • Won, Joong-Ho
  • Kim, Beom Joon
  • Paik, Myunghee Cho

Abstract

Most recent research of deep neural networks in the field of computer vision has focused on improving performances of point predictions by developing network architectures or learning algorithms. Reliable uncertainty quantification accompanied by point estimation can lead to a more informed decision, and the quality of prediction can be improved. In this paper, we invoke a Bayesian neural network and propose a natural way of quantifying uncertainties in classification problems by decomposing the moment-based predictive uncertainty into two parts: aleatoric and epistemic uncertainty. The proposed method takes into account the discrete nature of the outcome, yielding the correct interpretation of each uncertainty. We demonstrate that the proposed uncertainty quantification method provides additional insights into the point prediction using two Ischemic Stroke Lesion Segmentation Challenge datasets and the Digital Retinal Images for Vessel Extraction dataset.

Suggested Citation

  • Kwon, Yongchan & Won, Joong-Ho & Kim, Beom Joon & Paik, Myunghee Cho, 2020. "Uncertainty quantification using Bayesian neural networks in classification: Application to biomedical image segmentation," Computational Statistics & Data Analysis, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:csdana:v:142:y:2020:i:c:s016794731930163x
    DOI: 10.1016/j.csda.2019.106816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731930163X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.106816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Runtian & Song, Qiankun, 2024. "Mean-square exponential input-to-state stability for stochastic neutral-type quaternion-valued neural networks via Itô’s formula of quaternion version," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Amritanand Sebastian & Rahul Pendurthi & Azimkhan Kozhakhmetov & Nicholas Trainor & Joshua A. Robinson & Joan M. Redwing & Saptarshi Das, 2022. "Two-dimensional materials-based probabilistic synapses and reconfigurable neurons for measuring inference uncertainty using Bayesian neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Francesco De Pretis & Jürgen Landes, 2021. "EA3: A softmax algorithm for evidence appraisal aggregation," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-23, June.
    4. Lihuan Guo & Wei Wang & Yenchun Jim Wu, 2023. "What Do Scholars Propose for Future COVID-19 Research in Academic Publications? A Topic Analysis Based on Autoencoder," SAGE Open, , vol. 13(2), pages 21582440231, June.
    5. Matthias Griebel & Dennis Segebarth & Nikolai Stein & Nina Schukraft & Philip Tovote & Robert Blum & Christoph M. Flath, 2023. "Deep learning-enabled segmentation of ambiguous bioimages with deepflash2," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:142:y:2020:i:c:s016794731930163x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.