IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i10d10.1007_s11069-023-05937-8.html
   My bibliography  Save this article

Methodology to incorporate seismic damage and debris to evaluate strategies to reduce life safety risk for multi-hazard earthquake and tsunami

Author

Listed:
  • Mehrshad Amini

    (Oregon State University)

  • Dylan R. Sanderson

    (Oregon State University)

  • Daniel T. Cox

    (Oregon State University)

  • Andre R. Barbosa

    (Oregon State University)

  • Nathanael Rosenheim

    (Texas A&M University)

Abstract

This paper presents a methodology to evaluate life safety risk of coastal communities vulnerable to seismic and tsunami hazards. The work explicitly incorporates two important aspects in tsunami evacuation modeling: (1) the effect of earthquake-induced damage to buildings on building egress time, (2) the effect of earthquake-induced debris on horizontal evacuation time. The city of Seaside, Oregon, is selected as a testbed community. The hazard is based on a megathrust earthquake and tsunami from the Cascadia Subduction Zone that was defined in a previous study. The built environment consists of buildings and the transportation network for the city. Fragility analysis is used to estimate the seismic damage to buildings and resulting debris that covers portions of the road network. The horizontal evacuation time is determined based on the shortest path to shelters, including the increased travel time due to the earthquake-generated debris. The effects of different mitigation strategies are quantified. Results indicate the fatality and life safety risk of a near-field tsunami increases by 4.2–8.3 times when the effects of building egress and earthquake-induced debris are considered. The choice of population layer affects the life safety risk and thus the maximum risk is obtained when daytime populations are considered. Use of mitigation strategies result in a significant decrease in the number of fatalities. For hazards with recurrence intervals larger than 500- to 1000-years, the seismic retrofit is comparable to vertical evacuation and an effective strategy in reducing fatalities and associated risks. Implementing all mitigation strategies reduces the life safety risk by 90%.

Suggested Citation

  • Mehrshad Amini & Dylan R. Sanderson & Daniel T. Cox & Andre R. Barbosa & Nathanael Rosenheim, 2024. "Methodology to incorporate seismic damage and debris to evaluate strategies to reduce life safety risk for multi-hazard earthquake and tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9187-9222, August.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:10:d:10.1007_s11069-023-05937-8
    DOI: 10.1007/s11069-023-05937-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05937-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05937-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen Chen & Alireza Mostafizi & Haizhong Wang & Dan Cox & Lori Cramer, 2022. "Evacuation behaviors in tsunami drills," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 845-871, May.
    2. T. Sugimoto & H. Murakami & Y. Kozuki & K. Nishikawa & T. Shimada, 2003. "A Human Damage Prediction Method for Tsunami Disasters Incorporating Evacuation Activities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(3), pages 587-602, July.
    3. Wim Kellens & Tijs Neutens & Pieter Deckers & Johan Reyns & Philippe Maeyer, 2012. "Coastal flood risks and seasonal tourism: analysing the effects of tourism dynamics on casualty calculations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1211-1229, February.
    4. Nathan Wood & Christopher Burton & Susan Cutter, 2010. "Community variations in social vulnerability to Cascadia-related tsunamis in the U.S. Pacific Northwest," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(2), pages 369-389, February.
    5. Pidd, M. & de Silva, F. N. & Eglese, R. W., 1996. "A simulation model for emergency evacuation," European Journal of Operational Research, Elsevier, vol. 90(3), pages 413-419, May.
    6. Barbara Neumann & Athanasios T Vafeidis & Juliane Zimmermann & Robert J Nicholls, 2015. "Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-34, March.
    7. Stav Shapira & Tsafrir Levi & Yaron Bar-Dayan & Limor Aharonson-Daniel, 2018. "The impact of behavior on the risk of injury and death during an earthquake: a simulation-based study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1059-1074, April.
    8. Nobuo Mimura & Kazuya Yasuhara & Seiki Kawagoe & Hiromune Yokoki & So Kazama, 2011. "Damage from the Great East Japan Earthquake and Tsunami - A quick report," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(7), pages 803-818, October.
    9. Nathan Wood & Rick Wilson & Jamie Jones & Jeff Peters & Ed MacMullan & Tessa Krebs & Kimberley Shoaf & Kevin Miller, 2017. "Community disruptions and business costs for distant tsunami evacuations using maximum versus scenario-based zones," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 619-643, March.
    10. Dane Wiebe & Daniel Cox, 2014. "Application of fragility curves to estimate building damage and economic loss at a community scale: a case study of Seaside, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2043-2061, April.
    11. Kevin D. Henry & Nathan J. Wood & Tim G. Frazier, 2017. "Influence of road network and population demand assumptions in evacuation modeling for distant tsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1665-1687, February.
    12. Nathan Wood & Mathew Schmidtlein, 2012. "Anisotropic path modeling to assess pedestrian-evacuation potential from Cascadia-related tsunamis in the US Pacific Northwest," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 275-300, June.
    13. Alireza Mostafizi & Haizhong Wang & Dan Cox & Lori A. Cramer & Shangjia Dong, 2017. "Agent-based tsunami evacuation modeling of unplanned network disruptions for evidence-driven resource allocation and retrofitting strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1347-1372, September.
    14. Zhenqiang Wang & Gaofeng Jia, 2021. "A novel agent-based model for tsunami evacuation simulation and risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2045-2071, January.
    15. Dylan Sanderson & Sabarethinam Kameshwar & Nathanael Rosenheim & Daniel Cox, 2021. "Deaggregation of multi-hazard damages, losses, risks, and connectivity: an application to the joint seismic-tsunami hazard at Seaside, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1821-1847, November.
    16. Sergio Freire & Christoph Aubrecht & Stephanie Wegscheider, 2013. "Advancing tsunami risk assessment by improving spatio-temporal population exposure and evacuation modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1311-1324, September.
    17. Nathan Wood & Mathew Schmidtlein, 2013. "Community variations in population exposure to near-field tsunami hazards as a function of pedestrian travel time to safety," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1603-1628, February.
    18. Xia Chaoxu & Nie Gaozhong & Fan Xiwei & Li Huayue & Zhou Junxue & Zeng Xun, 2022. "A new model for the quantitative assessment of earthquake casualties based on the correction of anti-lethal level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1199-1226, January.
    19. Nobuo Mimura & Kazuya Yasuhara & Seiki Kawagoe & Hiromune Yokoki & So Kazama, 2011. "Erratum to: Damage from the Great East Japan Earthquake and Tsunami - A quick report," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(8), pages 943-945, December.
    20. José Badal & Miguel Vázquez-prada & Álvaro González, 2005. "Preliminary Quantitative Assessment of Earthquake Casualties and Damages," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(3), pages 353-374, March.
    21. Jonathan Remo & Nicholas Pinter, 2012. "Hazus-MH earthquake modeling in the central USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1055-1081, September.
    22. Paula Aguirre & Jorge Vásquez & Juan Carlos de la Llera & Juan González & Gabriel González, 2018. "Earthquake damage assessment for deterministic scenarios in Iquique, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1433-1461, July.
    23. C M Macal & M J North, 2010. "Tutorial on agent-based modelling and simulation," Journal of Simulation, Taylor & Francis Journals, vol. 4(3), pages 151-162, September.
    24. Tomoyuki Takabatake & Tomoya Shibayama & Miguel Esteban & Hidenori Ishii, 2018. "Advanced casualty estimation based on tsunami evacuation intended behavior: case study at Yuigahama Beach, Kamakura, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1763-1788, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathan Wood & Jeff Peters, 2015. "Variations in population vulnerability to tectonic and landslide-related tsunami hazards in Alaska," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1811-1831, January.
    2. Karel Mls & Milan Kořínek & Kamila Štekerová & Petr Tučník & Vladimír Bureš & Pavel Čech & Martina Husáková & Peter Mikulecký & Tomáš Nacházel & Daniela Ponce & Marek Zanker & František Babič & Ioanna, 2023. "Agent-based models of human response to natural hazards: systematic review of tsunami evacuation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1887-1908, February.
    3. Busra Celikbas & Duygu Tufekci-Enginar & Gozde Guney Dogan & Cagil Kolat & Marzia Santini & Alessandro Annunziato & Ocal Necmioglu & Ahmet Cevdet Yalciner & Mehmet Lutfi Suzen, 2023. "Pedestrian evacuation time calculation against tsunami hazard for southern coasts of Bodrum peninsula," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 243-260, October.
    4. Jorge León & Alonso Ogueda & Alejandra Gubler & Patricio Catalán & Matías Correa & Javiera Castañeda & Gianni Beninati, 2024. "Increasing resilience to catastrophic near-field tsunamis: systems for capturing, modelling, and assessing vertical evacuation practices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9135-9161, August.
    5. Nathan Wood & Jeanne M. Jones & Yoshiki Yamazaki & Kwok-Fai Cheung & Jacinta Brown & Jamie L. Jones & Nina Abdollahian, 2019. "Population vulnerability to tsunami hazards informed by previous and projected disasters: a case study of American Samoa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 505-528, February.
    6. Zhenqiang Wang & Gaofeng Jia, 2021. "A novel agent-based model for tsunami evacuation simulation and risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2045-2071, January.
    7. Chen Chen & Alireza Mostafizi & Haizhong Wang & Dan Cox & Lori Cramer, 2022. "Evacuation behaviors in tsunami drills," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 845-871, May.
    8. Jan Oetjen & Vallam Sundar & Sriram Venkatachalam & Klaus Reicherter & Max Engel & Holger Schüttrumpf & Sannasi Annamalaisamy Sannasiraj, 2022. "A comprehensive review on structural tsunami countermeasures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1419-1449, September.
    9. George R. Priest & Laura L. Stimely & Nathan J. Wood & Ian P. Madin & Rudie J. Watzig, 2016. "Beat-the-wave evacuation mapping for tsunami hazards in Seaside, Oregon, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1031-1056, January.
    10. Tomoyuki Takabatake & Philippe St-Germain & Ioan Nistor & Jacob Stolle & Tomoya Shibayama, 2019. "Numerical modelling of coastal inundation from Cascadia Subduction Zone tsunamis and implications for coastal communities on western Vancouver Island, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 267-291, August.
    11. Dylan Sanderson & Sabarethinam Kameshwar & Nathanael Rosenheim & Daniel Cox, 2021. "Deaggregation of multi-hazard damages, losses, risks, and connectivity: an application to the joint seismic-tsunami hazard at Seaside, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1821-1847, November.
    12. Karina Landeros-Mugica & Javier Urbina-Soria & Irasema Alcántara-Ayala, 2016. "The good, the bad and the ugly: on the interactions among experience, exposure and commitment with reference to landslide risk perception in México," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1515-1537, February.
    13. Sarah Hall & Jessica Pettersson & William Meservy & Ron Harris & Diannitta Agustinawati & Jennie Olson & Allayna McFarlane, 2017. "Awareness of tsunami natural warning signs and intended evacuation behaviors in Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 473-496, October.
    14. K. D. C. R. Dissanayaka & Norio Tanaka & T. L. C. Vinodh, 2022. "Integration of Eco-DRR and hybrid defense system on mitigation of natural disasters (Tsunami and Coastal Flooding): a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 1-28, January.
    15. Caruso, Germán Daniel, 2017. "The legacy of natural disasters: The intergenerational impact of 100 years of disasters in Latin America," Journal of Development Economics, Elsevier, vol. 127(C), pages 209-233.
    16. Takahiro Yabe & Yoshihide Sekimoto & Kota Tsubouchi & Satoshi Ikemoto, 2019. "Cross-comparative analysis of evacuation behavior after earthquakes using mobile phone data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-12, February.
    17. Audrey Faral & Franck Lavigne & Wayan Jarrah Sastrawan & I Gede Putu Eka Suryana & Alicia Schrikker & Made Pageh & Atmaja Dewa Made & Made Windu Antara Kesiman & Mukhamad Ngainul Malawani & Danang Sri, 2024. "Deadliest natural disaster in Balinese history in November 1815 revealed by Western and Indonesian written sources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 12011-12041, October.
    18. Xianhua Wu & Yingying Wang & Lingjuan Yang & Shunfeng Song & Guo Wei & Ji Guo, 2016. "Impact of political dispute on international trade based on an international trade Inoperability Input-Output Model: A case study of the 2012 Diaoyu Islands Dispute," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 25(1), pages 47-70, February.
    19. Fumio Ohtake & Katsunori Yamada & Shoko Yamane, 2016. "Appraising Unhappiness in the Wake of the Great East Japan Earthquake," The Japanese Economic Review, Springer, vol. 67(4), pages 403-417, December.
    20. Tomoyuki Takabatake & Tomoya Shibayama & Miguel Esteban & Hidenori Ishii, 2018. "Advanced casualty estimation based on tsunami evacuation intended behavior: case study at Yuigahama Beach, Kamakura, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1763-1788, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:10:d:10.1007_s11069-023-05937-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.