IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v28y2009i6p1063-1079.html
   My bibliography  Save this article

Dynamic Customer Management and the Value of One-to-One Marketing

Author

Listed:
  • Romana Khan

    (McCombs School of Business, University of Texas at Austin, Austin, Texas 78713)

  • Michael Lewis

    (Olin Business School, Washington University in St. Louis, St. Louis, Missouri 63130)

  • Vishal Singh

    (Stern School of Business, New York University, New York, New York 10012)

Abstract

The concept of one-to-one marketing is intuitively appealing, but there is little research that investigates the value of individual-level marketing relative to segment-level or mass marketing. In this paper, we investigate the financial benefits of and computational challenges involved in one-to-one marketing. The analysis uses data from an online grocery and drug retailer. Like many retailers, this firm uses multiple promotional instruments including discount coupons, free shipping offers, and a loyalty program. We investigate the impact of customizing these promotions on the two most important consumer decisions: the decision to buy from the store and expenditure. Our modeling approach accounts for two sources of heterogeneity in consumers' responsiveness to various marketing mix elements: cross-sectional differences across consumers and temporal differences within consumers based on the purchase cycle. The model parameter estimates are fed into a dynamic programming model that determines the optimal number, sequence, and timing of promotions to maximize retailer profits. A series of policy simulations show that customizing promotions leads to a significant increase in profits relative to the firm's current practice of uniform promotions. However, the effectiveness of various promotions varies because of both cross-sectional differences in consumers as well within consumer heterogeneity due to purchase cycle factors. For instance, we find that free shipping tends to be the preferred instrument for re-acquiring lapsed customers, whereas an across-the-board price cut (via a discount coupon) is the most effective tool for managing the segment of most active customers. Interestingly, we find that customizing based on within-customer temporal heterogeneity contributes more to profitability than exploiting variations across consumers. This is important because the computational burden of implementing the dynamic optimization to account for cross-sectional heterogeneity is far greater than accounting for temporal heterogeneity. Furthermore, targeting promotions based only on timing rather than the nature and magnitude of the offers across consumers alleviates the public relations risks of price discrimination. Implications for marketing managers are also discussed.

Suggested Citation

  • Romana Khan & Michael Lewis & Vishal Singh, 2009. "Dynamic Customer Management and the Value of One-to-One Marketing," Marketing Science, INFORMS, vol. 28(6), pages 1063-1079, 11-12.
  • Handle: RePEc:inm:ormksc:v:28:y:2009:i:6:p:1063-1079
    DOI: 10.1287/mksc.1090.0497
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1090.0497
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1090.0497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
    2. Duncan I. Simester & Peng Sun & John N. Tsitsiklis, 2006. "Dynamic Catalog Mailing Policies," Management Science, INFORMS, vol. 52(5), pages 683-696, May.
    3. Roland T. Rust & Peter C. Verhoef, 2005. "Optimizing the Marketing Interventions Mix in Intermediate-Term CRM," Marketing Science, INFORMS, vol. 24(3), pages 477-489, December.
    4. Dipak C. Jain & Naufel J. Vilcassim, 1991. "Investigating Household Purchase Timing Decisions: A Conditional Hazard Function Approach," Marketing Science, INFORMS, vol. 10(1), pages 1-23.
    5. Michael Lewis & Vishal Singh & Scott Fay, 2006. "An Empirical Study of the Impact of Nonlinear Shipping and Handling Fees on Purchase Incidence and Expenditure Decisions," Marketing Science, INFORMS, vol. 25(1), pages 51-64, 01-02.
    6. Gabriel R. Bitran & Susana V. Mondschein, 1996. "Mailing Decisions in the Catalog Sales Industry," Management Science, INFORMS, vol. 42(9), pages 1364-1381, September.
    7. Keane, Michael P & Wolpin, Kenneth I, 1994. "The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 648-672, November.
    8. Kristiaan Helsen & David C. Schmittlein, 1993. "Analyzing Duration Times in Marketing: Evidence for the Effectiveness of Hazard Rate Models," Marketing Science, INFORMS, vol. 12(4), pages 395-414.
    9. Jinhong Xie & Steven M. Shugan, 2001. "Electronic Tickets, Smart Cards, and Online Prepayments: When and How to Advance Sell," Marketing Science, INFORMS, vol. 20(3), pages 219-243, June.
    10. Jie Zhang & Lakshman Krishnamurthi, 2004. "Customizing Promotions in Online Stores," Marketing Science, INFORMS, vol. 23(4), pages 561-578, June.
    11. Füsun Gönül & Meng Ze Shi, 1998. "Optimal Mailing of Catalogs: A New Methodology Using Estimable Structural Dynamic Programming Models," Management Science, INFORMS, vol. 44(9), pages 1249-1262, September.
    12. Michael Lewis, 2005. "Research Note: A Dynamic Programming Approach to Customer Relationship Pricing," Management Science, INFORMS, vol. 51(6), pages 986-994, June.
    13. Vishal P. Singh & Karsten T. Hansen & Robert C. Blattberg, 2006. "Market Entry and Consumer Behavior: An Investigation of a Wal-Mart Supercenter," Marketing Science, INFORMS, vol. 25(5), pages 457-476, September.
    14. Kim, Jin Gyo & Menzefricke, Ulrich & Feinberg, Fred M., 2005. "Modeling Parametric Evolution in a Random Utility Framework," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 282-294, July.
    15. Jan Roelf Bult & Tom Wansbeek, 1995. "Optimal Selection for Direct Mail," Marketing Science, INFORMS, vol. 14(4), pages 378-394.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roland T. Rust & Tuck Siong Chung, 2006. "Marketing Models of Service and Relationships," Marketing Science, INFORMS, vol. 25(6), pages 560-580, 11-12.
    2. George, Morris & Kumar, V. & Grewal, Dhruv, 2013. "Maximizing Profits for a Multi-Category Catalog Retailer," Journal of Retailing, Elsevier, vol. 89(4), pages 374-396.
    3. Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014. "Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition," Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
    4. Verhoef, Peter C. & Venkatesan, Rajkumar & McAlister, Leigh & Malthouse, Edward C. & Krafft, Manfred & Ganesan, Shankar, 2010. "CRM in Data-Rich Multichannel Retailing Environments: A Review and Future Research Directions," Journal of Interactive Marketing, Elsevier, vol. 24(2), pages 121-137.
    5. Andrés Musalem & Yogesh V. Joshi, 2009. "—How Much Should You Invest in Each Customer Relationship? A Competitive Strategic Approach," Marketing Science, INFORMS, vol. 28(3), pages 555-565, 05-06.
    6. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    7. Shie Mannor & Duncan Simester & Peng Sun & John N. Tsitsiklis, 2007. "Bias and Variance Approximation in Value Function Estimates," Management Science, INFORMS, vol. 53(2), pages 308-322, February.
    8. Dimitris Bertsimas & Adam J. Mersereau, 2007. "A Learning Approach for Interactive Marketing to a Customer Segment," Operations Research, INFORMS, vol. 55(6), pages 1120-1135, December.
    9. Blattberg, Robert C. & Malthouse, Edward C. & Neslin, Scott A., 2009. "Customer Lifetime Value: Empirical Generalizations and Some Conceptual Questions," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 157-168.
    10. Durango-Cohen, Elizabeth J., 2013. "Modeling contribution behavior in fundraising: Segmentation analysis for a public broadcasting station," European Journal of Operational Research, Elsevier, vol. 227(3), pages 538-551.
    11. Giuliano Tirenni & Abderrahim Labbi & Cesar Berrospi & André Elisseeff & Timir Bhose & Kari Pauro & Seppo Pöyhönen, 2007. "—Customer Equity and Lifetime Management (CELM) Finnair Case Study," Marketing Science, INFORMS, vol. 26(4), pages 553-565, 07-08.
    12. Alan L. Montgomery, 2001. "Applying Quantitative Marketing Techniques to the Internet," Interfaces, INFORMS, vol. 31(2), pages 90-108, April.
    13. A. Prinzie & D. Van Den Poel, 2005. "Constrained optimization of data-mining problems to improve model performance: A direct-marketing application," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/298, Ghent University, Faculty of Economics and Business Administration.
    14. Tat Chan & Naser Hamdi & Xiang Hui & Zhenling Jiang, 2022. "The Value of Verified Employment Data for Consumer Lending: Evidence from Equifax," Marketing Science, INFORMS, vol. 41(4), pages 795-814, July.
    15. André Bonfrer & Xavier Drèze, 2009. "Real-Time Evaluation of E-mail Campaign Performance," Marketing Science, INFORMS, vol. 28(2), pages 251-263, 03-04.
    16. Sarkar, Mainak & De Bruyn, Arnaud, 2021. "LSTM Response Models for Direct Marketing Analytics: Replacing Feature Engineering with Deep Learning," Journal of Interactive Marketing, Elsevier, vol. 53(C), pages 80-95.
    17. Sunil Gupta & Valarie Zeithaml, 2006. "Customer Metrics and Their Impact on Financial Performance," Marketing Science, INFORMS, vol. 25(6), pages 718-739, 11-12.
    18. Bas Donkers & Peter Verhoef & Martijn Jong, 2007. "Modeling CLV: A test of competing models in the insurance industry," Quantitative Marketing and Economics (QME), Springer, vol. 5(2), pages 163-190, June.
    19. Konstantin Kogan & Avi Herbon & Beatrice Venturi, 2020. "Direct marketing of an event under hazards of customer saturation and forgetting," Annals of Operations Research, Springer, vol. 295(1), pages 207-227, December.
    20. Roland T. Rust & Peter C. Verhoef, 2005. "Optimizing the Marketing Interventions Mix in Intermediate-Term CRM," Marketing Science, INFORMS, vol. 24(3), pages 477-489, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:28:y:2009:i:6:p:1063-1079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.