IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v20y2018i1d10.1007_s11009-017-9555-6.html
   My bibliography  Save this article

Conditional, Non-Homogeneous and Doubly Stochastic Compound Poisson Processes with Stochastic Discounted Claims

Author

Listed:
  • Ghislain Léveillé

    (Université Laval)

  • Emmanuel Hamel

    (Université Laval)

Abstract

In this paper, we study the conditional, non-homogeneous and doubly stochastic compound Poisson process with stochastic discounted claims. We derive the moment generating functions of these risk processes and find their inverses, numerically or analytically, by using their corresponding characteristic functions. We then compare their distributions and some risk measures as the VaR and TVaR, and we examine the case where there is a possible dependence between the occurrence time and the severity of the claim.

Suggested Citation

  • Ghislain Léveillé & Emmanuel Hamel, 2018. "Conditional, Non-Homogeneous and Doubly Stochastic Compound Poisson Processes with Stochastic Discounted Claims," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 353-368, March.
  • Handle: RePEc:spr:metcap:v:20:y:2018:i:1:d:10.1007_s11009-017-9555-6
    DOI: 10.1007/s11009-017-9555-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-017-9555-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-017-9555-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leveille, Ghislain & Garrido, Jose, 2001. "Moments of compound renewal sums with discounted claims," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 217-231, April.
    2. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
    3. Dassios, Angelos & Jang, Jiwook, 2008. "The distribution of the interval between events of a Cox process with shot noise intensity," LSE Research Online Documents on Economics 31864, London School of Economics and Political Science, LSE Library.
    4. Angelos Dassios & Jiwook Jang, 2008. "The Distribution of the Interval between Events of a Cox Process with Shot Noise Intensity," International Journal of Stochastic Analysis, Hindawi, vol. 2008, pages 1-14, November.
    5. Pavel V. Shevchenko, 2010. "Calculation of aggregate loss distributions," Papers 1008.1108, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franck Adékambi & Kokou Essiomle, 2021. "Asymptotic Tail Probability of the Discounted Aggregate Claims under Homogeneous, Non-Homogeneous and Mixed Poisson Risk Model," Risks, MDPI, vol. 9(7), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.
    2. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2017. "Retirement spending and biological age," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 58-76.
    3. Antoine Bouveret, 2018. "Cyber Risk for the Financial Sector: A Framework for Quantitative Assessment," IMF Working Papers 2018/143, International Monetary Fund.
    4. Bosserhoff, Frank & Stadje, Mitja, 2021. "Time-consistent mean-variance investment with unit linked life insurance contracts in a jump-diffusion setting," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 130-146.
    5. Eckert, Christian & Gatzert, Nadine, 2017. "Modeling operational risk incorporating reputation risk: An integrated analysis for financial firms," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 122-137.
    6. Anastasia Novokreshchenova, 2016. "Predicting Human Mortality: Quantitative Evaluation of Four Stochastic Models," Risks, MDPI, vol. 4(4), pages 1-28, December.
    7. Wu, Yang-Che & Chung, San-Lin, 2010. "Catastrophe risk management with counterparty risk using alternative instruments," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 234-245, October.
    8. Mark Bentley & Alec Stephenson & Peter Toscas & Zili Zhu, 2020. "A Multivariate Model to Quantify and Mitigate Cybersecurity Risk," Risks, MDPI, vol. 8(2), pages 1-21, June.
    9. Zhang, Zhehao, 2018. "Renewal sums under mixtures of exponentials," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 281-301.
    10. Daniel J. Geiger & Akim Adekpedjou, 2022. "Analysis of IBNR Liabilities with Interevent Times Depending on Claim Counts," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 815-829, June.
    11. Ying Jiao & Yahia Salhi & Shihua Wang, 2022. "Dynamic Bivariate Mortality Modelling," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 917-938, June.
    12. Apicella, Giovanna & Dacorogna, Michel M, 2016. "A General framework for modelling mortality to better estimate its relationship with interest rate risks," MPRA Paper 75788, University Library of Munich, Germany.
    13. Elisa Luciano & Jaap Spreeuw & Elena Vigna, 2012. "Evolution of coupled lives' dependency across generations and pricing impact," Carlo Alberto Notebooks 258, Collegio Carlo Alberto.
    14. Jang, Jiwook, 2007. "Jump diffusion processes and their applications in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 62-70, July.
    15. Francesca Biagini & Andreas Groll & Jan Widenmann, 2016. "Risk Minimization for Insurance Products via F-Doubly Stochastic Markov Chains," Risks, MDPI, vol. 4(3), pages 1-26, July.
    16. Angelos Dassios & Jiwook Jang & Hongbiao Zhao, 2019. "A Generalised CIR Process with Externally-Exciting and Self-Exciting Jumps and Its Applications in Insurance and Finance," Risks, MDPI, vol. 7(4), pages 1-18, October.
    17. Man Chung Fung & Katja Ignatieva & Michael Sherris, 2019. "Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives," Risks, MDPI, vol. 7(1), pages 1-25, January.
    18. Alan De Genaro Dario & Adilson Simonis, 2011. "Properties of Doubly Stochastic Poisson Process with affine intensity," Papers 1109.2884, arXiv.org, revised Sep 2011.
    19. Deelstra, Griselda & Grasselli, Martino & Van Weverberg, Christopher, 2016. "The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 205-219.
    20. Man Chung Fung & Katja Ignatieva & Michael Sherris, 2015. "Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives," Papers 1508.00090, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:20:y:2018:i:1:d:10.1007_s11009-017-9555-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.