IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v71y2016icp205-219.html
   My bibliography  Save this article

The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options

Author

Listed:
  • Deelstra, Griselda
  • Grasselli, Martino
  • Van Weverberg, Christopher

Abstract

In this paper we investigate the consequences on the pricing of insurance contingent claims when we relax the typical independence assumption made in the actuarial literature between mortality risk and interest rate risk. Starting from the Gaussian approach of Liu et al. (2014), we consider some multifactor models for the mortality and interest rates based on more general affine models which remain positive and we derive pricing formulas for insurance contracts like Guaranteed Annuity Options (GAOs). In a Wishart affine model, which allows for a non-trivial dependence between the mortality and the interest rates, we go far beyond the results found in the Gaussian case by Liu et al. (2014), where the value of these insurance contracts can be explained only in terms of the initial pairwise linear correlation.

Suggested Citation

  • Deelstra, Griselda & Grasselli, Martino & Van Weverberg, Christopher, 2016. "The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 205-219.
  • Handle: RePEc:eee:insuma:v:71:y:2016:i:c:p:205-219
    DOI: 10.1016/j.insmatheco.2016.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716301664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2016.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dhaene, Jan & Kukush, Alexander & Luciano, Elisa & Schoutens, Wim & Stassen, Ben, 2013. "On the (in-)dependence between financial and actuarial risks," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 522-531.
    2. JosE Da Fonseca & Martino Grasselli & Claudio Tebaldi, 2008. "A multifactor volatility Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 8(6), pages 591-604.
    3. Nan Zhu & Daniel Bauer, 2011. "Applications of Forward Mortality Factor Models in Life Insurance Practice*," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(4), pages 567-594, October.
    4. Chiarella, Carl & Da Fonseca, José & Grasselli, Martino, 2014. "Pricing range notes within Wishart affine models," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 193-203.
    5. Favero, Carlo A. & Gozluklu, Arie E. & Tamoni, Andrea, 2011. "Demographic Trends, the Dividend-Price Ratio, and the Predictability of Long-Run Stock Market Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(5), pages 1493-1520, October.
    6. Maria Cristina Recchioni & Yu Sun & Gabriele Tedeschi, 2017. "Can negative interest rates really affect option pricing? Empirical evidence from an explicitly solvable stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1257-1275, August.
    7. Dickson,David C. M. & Hardy,Mary R. & Waters,Howard R., 2013. "Solutions Manual for Actuarial Mathematics for Life Contingent Risks," Cambridge Books, Cambridge University Press, number 9781107620261, February.
    8. Christa Cuchiero & Damir Filipovi'c & Eberhard Mayerhofer & Josef Teichmann, 2009. "Affine processes on positive semidefinite matrices," Papers 0910.0137, arXiv.org, revised Apr 2011.
    9. Chiarella, Carl & Hsiao, Chih-Ying & Tô, Thuy-Duong, 2016. "Stochastic correlation and risk premia in term structure models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 59-78.
    10. Alessandro Gnoatto, 2012. "The Wishart Short Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-24.
    11. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    12. Andrea Buraschi & Paolo Porchia & Fabio Trojani, 2010. "Correlation Risk and Optimal Portfolio Choice," Journal of Finance, American Finance Association, vol. 65(1), pages 393-420, February.
    13. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    14. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    15. Branger, Nicole & Muck, Matthias, 2012. "Keep on smiling? The pricing of Quanto options when all covariances are stochastic," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1577-1591.
    16. Dahl, Mikkel & Moller, Thomas, 2006. "Valuation and hedging of life insurance liabilities with systematic mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 193-217, October.
    17. Chulmin Kang & Wanmo Kang, 2013. "Exact Simulation of Wishart Multidimensional Stochastic Volatility Model," Papers 1309.0557, arXiv.org.
    18. José Fonseca & Martino Grasselli & Claudio Tebaldi, 2007. "Option pricing when correlations are stochastic: an analytical framework," Review of Derivatives Research, Springer, vol. 10(2), pages 151-180, May.
    19. Bayraktar, Erhan & Milevsky, Moshe A. & David Promislow, S. & Young, Virginia R., 2009. "Valuation of mortality risk via the instantaneous Sharpe ratio: Applications to life annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 676-691, March.
    20. Martino Grasselli & Claudio Tebaldi, 2008. "Solvable Affine Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 135-153, January.
    21. Ballotta, Laura & Haberman, Steven, 2003. "Valuation of guaranteed annuity conversion options," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 87-108, August.
    22. Milevsky, Moshe A. & Young, Virginia R., 2007. "Annuitization and asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 31(9), pages 3138-3177, September.
    23. Gourieroux, Christian & Sufana, Razvan, 2011. "Discrete time Wishart term structure models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 815-824, June.
    24. Russo, Vincenzo & Giacometti, Rosella & Ortobelli, Sergio & Rachev, Svetlozar & Fabozzi, Frank J., 2011. "Calibrating affine stochastic mortality models using term assurance premiums," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 53-60, July.
    25. Da Fonseca, José & Gnoatto, Alessandro & Grasselli, Martino, 2013. "A flexible matrix Libor model with smiles," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 774-793.
    26. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    27. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
    28. Gourieroux, Christian & Sufana, Razvan, 2010. "Derivative Pricing With Wishart Multivariate Stochastic Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 438-451.
    29. Pelsser, Antoon, 2003. "Pricing and hedging guaranteed annuity options via static option replication," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 283-296, October.
    30. Martino Grasselli & Giulio Miglietta, 2016. "A flexible spot multiple-curve model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1465-1477, October.
    31. Nicolini, Esteban A., 2004. "Mortality, interest rates, investment, and agricultural production in 18th century England," Explorations in Economic History, Elsevier, vol. 41(2), pages 130-155, April.
    32. Deelstra, Griselda & Rayée, Grégory, 2013. "Pricing Variable Annuity Guarantees in a local volatility framework," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 650-663.
    33. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    34. Dickson,David C. M. & Hardy,Mary R. & Waters,Howard R., 2013. "Actuarial Mathematics for Life Contingent Risks," Cambridge Books, Cambridge University Press, number 9781107044074, October.
    35. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 79-120, May.
    36. Chiu, Mei Choi & Wong, Hoi Ying & Zhao, Jing, 2015. "Commodity derivatives pricing with cointegration and stochastic covariances," European Journal of Operational Research, Elsevier, vol. 246(2), pages 476-486.
    37. José da Fonseca & Martino Grasselli, 2011. "Riding on the smiles," Quantitative Finance, Taylor & Francis Journals, vol. 11(11), pages 1609-1632.
    38. Ballotta, Laura & Haberman, Steven, 2006. "The fair valuation problem of guaranteed annuity options: The stochastic mortality environment case," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 195-214, February.
    39. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    40. Yijia Lin & Samuel H. Cox, 2005. "Securitization of Mortality Risks in Life Annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(2), pages 227-252, June.
    41. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karim Barigou & Daniel Linders & Fan Yang, 2021. "Actuarial-consistency and two-step actuarial valuations: a new paradigm to insurance valuation," Papers 2109.13796, arXiv.org, revised Mar 2022.
    2. Milevsky, Moshe A., 2020. "Calibrating Gompertz in reverse: What is your longevity-risk-adjusted global age?," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 147-161.
    3. Hainaut, Donatien & Devolder, Pierre & Pelsser, Antoon, 2018. "Robust evaluation of SCR for participating life insurances under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 107-123.
    4. Li, Han & Liu, Haibo & Tang, Qihe & Yuan, Zhongyi, 2023. "Pricing extreme mortality risk in the wake of the COVID-19 pandemic," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 84-106.
    5. Zhao, Yixing & Mamon, Rogemar, 2018. "An efficient algorithm for the valuation of a guaranteed annuity option with correlated financial and mortality risks," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 1-12.
    6. Huang, Yiming & Mamon, Rogemar & Xiong, Heng, 2022. "Valuing guaranteed minimum accumulation benefits by a change of numéraire approach," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 1-26.
    7. Karim Barigou & Daniël Linders & Fan yang, 2022. "Actuarial-consistency and two-step actuarial valuations: a new paradigm to insurance valuation," Working Papers hal-03327710, HAL.
    8. Rabitti, Giovanni & Borgonovo, Emanuele, 2020. "Is mortality or interest rate the most important risk in annuity models? A comparison of sensitivity analysis methods," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 48-58.
    9. Da Fonseca, José, 2024. "Pricing guaranteed annuity options in a linear-rational Wishart mortality model," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 122-131.
    10. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    11. Karim Barigou & Daniël Linders & Fan Yang, 2022. "Actuarial-consistency and two-step actuarial valuations: a new paradigm to insurance valuation," Post-Print hal-03327710, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    2. Chiarella, Carl & Da Fonseca, José & Grasselli, Martino, 2014. "Pricing range notes within Wishart affine models," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 193-203.
    3. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    4. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    5. Da Fonseca, José & Gnoatto, Alessandro & Grasselli, Martino, 2013. "A flexible matrix Libor model with smiles," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 774-793.
    6. Bravo, Jorge M. & Nunes, João Pedro Vidal, 2021. "Pricing longevity derivatives via Fourier transforms," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 81-97.
    7. Da Fonseca, José, 2016. "On moment non-explosions for Wishart-based stochastic volatility models," European Journal of Operational Research, Elsevier, vol. 254(3), pages 889-894.
    8. Da Fonseca, José, 2024. "Pricing guaranteed annuity options in a linear-rational Wishart mortality model," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 122-131.
    9. Francesca Biagini & Alessandro Gnoatto & Maximilian Hartel, 2013. "Affine HJM Framework on $S_{d}^{+}$ and Long-Term Yield," Papers 1311.0688, arXiv.org, revised Aug 2015.
    10. Wang, Ting & Young, Virginia R., 2016. "Hedging pure endowments with mortality derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 238-255.
    11. Luciano, Elisa & Regis, Luca & Vigna, Elena, 2012. "Delta–Gamma hedging of mortality and interest rate risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 402-412.
    12. Cox, Samuel H. & Lin, Yijia & Pedersen, Hal, 2010. "Mortality risk modeling: Applications to insurance securitization," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 242-253, February.
    13. Matheus R Grasselli & Sebastiano Silla, 2009. "A policyholder's utility indifference valuation model for the guaranteed annuity option," Papers 0908.3196, arXiv.org.
    14. Marcus C. Christiansen, 2013. "Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates," Risks, MDPI, vol. 1(3), pages 1-20, October.
    15. Shen, Yang & Siu, Tak Kuen, 2013. "Longevity bond pricing under stochastic interest rate and mortality with regime-switching," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 114-123.
    16. Chen, Bingzheng & Zhang, Lihong & Zhao, Lin, 2010. "On the robustness of longevity risk pricing," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 358-373, December.
    17. Ting Wang & Virginia R. Young, 2010. "Hedging Pure Endowments with Mortality Derivatives," Papers 1011.0248, arXiv.org.
    18. Apicella, Giovanna & Dacorogna, Michel M, 2016. "A General framework for modelling mortality to better estimate its relationship with interest rate risks," MPRA Paper 75788, University Library of Munich, Germany.
    19. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    20. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.

    More about this item

    Keywords

    Stochastic mortality; Affine interest rate models; Dependence; Guaranteed Annuity Options; Wishart process;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:71:y:2016:i:c:p:205-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.