IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2021i7p122-d585291.html
   My bibliography  Save this article

Asymptotic Tail Probability of the Discounted Aggregate Claims under Homogeneous, Non-Homogeneous and Mixed Poisson Risk Model

Author

Listed:
  • Franck Adékambi

    (Schoool of Economics, University of Johannesburg, Johannesburg 2006, South Africa)

  • Kokou Essiomle

    (Schoool of Economics, University of Johannesburg, Johannesburg 2006, South Africa)

Abstract

In this paper, we derive a closed-form expression of the tail probability of the aggregate discounted claims under homogeneous, non-homogeneous and mixed Poisson risk models with constant force of interest by using a general dependence structure between the inter-occurrence time and the claim sizes. This dependence structure is relevant since it is well known that under catastrophic or extreme events the inter-occurrence time and the claim severities are dependent.

Suggested Citation

  • Franck Adékambi & Kokou Essiomle, 2021. "Asymptotic Tail Probability of the Discounted Aggregate Claims under Homogeneous, Non-Homogeneous and Mixed Poisson Risk Model," Risks, MDPI, vol. 9(7), pages 1-22, June.
  • Handle: RePEc:gam:jrisks:v:9:y:2021:i:7:p:122-:d:585291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/7/122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/7/122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sundt, Bjorn & Teugels, Jozef L., 1995. "Ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 7-22, April.
    2. Yang, Yang & Leipus, Remigijus & Šiaulys, Jonas, 2012. "Tail probability of randomly weighted sums of subexponential random variables under a dependence structure," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1727-1736.
    3. Albrecher, Hansjorg & Boxma, Onno J., 2004. "A ruin model with dependence between claim sizes and claim intervals," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 245-254, October.
    4. Ghislain Léveillé & Emmanuel Hamel, 2018. "Conditional, Non-Homogeneous and Doubly Stochastic Compound Poisson Processes with Stochastic Discounted Claims," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 353-368, March.
    5. Cai, Jun & Dickson, David C. M., 2003. "Upper bounds for ultimate ruin probabilities in the Sparre Andersen model with interest," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 61-71, February.
    6. Boogaert, P. & Haezendonck, J. & Delbaen, F., 1988. "Limit theorems for the present value of the surplus of an insurance portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 7(2), pages 131-138, April.
    7. Delbaen, F. & Haezendonck, J., 1987. "Classical risk theory in an economic environment," Insurance: Mathematics and Economics, Elsevier, vol. 6(2), pages 85-116, April.
    8. Taylor, G. C., 1979. "Probability of Ruin under Inflationary Conditions or under Experience Rating," ASTIN Bulletin, Cambridge University Press, vol. 10(2), pages 149-162, March.
    9. Albrecher, Hansjorg & Boxma, Onno J., 2005. "On the discounted penalty function in a Markov-dependent risk model," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 650-672, December.
    10. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adekambi Franck & Mamane Salha, 2012. "Health Care Insurance Pricing Using Alternating Renewal Processes," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 7(1), pages 1-14, December.
    2. Woo, Jae-Kyung & Cheung, Eric C.K., 2013. "A note on discounted compound renewal sums under dependency," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 170-179.
    3. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    4. Leveille, Ghislain & Garrido, Jose, 2001. "Moments of compound renewal sums with discounted claims," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 217-231, April.
    5. Ren, Jiandong, 2012. "A multivariate aggregate loss model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 402-408.
    6. Wu, Rong & Wang, Guojing & Zhang, Chunsheng, 2005. "On a joint distribution for the risk process with constant interest force," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 365-374, June.
    7. Dickson, David C. M. & Waters, Howard R., 1999. "Ruin probabilities with compounding assets," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 49-62, September.
    8. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    9. Jang, Jiwook, 2007. "Jump diffusion processes and their applications in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 62-70, July.
    10. Yuen, Kam C. & Wang, Guojing & Li, Wai K., 2007. "The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 104-112, January.
    11. Zhou, Ming & Cai, Jun, 2009. "A perturbed risk model with dependence between premium rates and claim sizes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 382-392, December.
    12. Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
    13. Shuanming Li & Yi Lu, 2018. "On the Moments and the Distribution of Aggregate Discounted Claims in a Markovian Environment," Risks, MDPI, vol. 6(2), pages 1-16, May.
    14. Paulsen, Jostein, 1998. "Ruin theory with compounding assets -- a survey," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 3-16, May.
    15. Cai, Jun, 2004. "Ruin probabilities and penalty functions with stochastic rates of interest," Stochastic Processes and their Applications, Elsevier, vol. 112(1), pages 53-78, July.
    16. Jang, Ji-Wook & Krvavych, Yuriy, 2004. "Arbitrage-free premium calculation for extreme losses using the shot noise process and the Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 97-111, August.
    17. Sundt, Bjorn & Teugels, Jozef L., 1995. "Ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 7-22, April.
    18. Wang, Guojing & Wu, Rong, 2001. "Distributions for the risk process with a stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 95(2), pages 329-341, October.
    19. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Zhao, Shouqi, 2016. "On the evaluation of finite-time ruin probabilities in a dependent risk model," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 268-286.
    20. Chunwei Wang & Chuancun Yin, 2009. "Dividend payments in the classical risk model under absolute ruin with debit interest," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 247-262, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2021:i:7:p:122-:d:585291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.