IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1109.2884.html
   My bibliography  Save this paper

Properties of Doubly Stochastic Poisson Process with affine intensity

Author

Listed:
  • Alan De Genaro Dario
  • Adilson Simonis

Abstract

This paper discusses properties of a Doubly Stochastic Poisson Process (DSPP) where the intensity process belongs to a class of affine diffusions. For any intensity process from this class we derive an analytical expression for probability distribution functions of the corresponding DSPP. A specification of our results is provided in a particular case where the intensity is given by one-dimensional Feller process and its parameters are estimated by Kalman filtering for high frequency transaction data.

Suggested Citation

  • Alan De Genaro Dario & Adilson Simonis, 2011. "Properties of Doubly Stochastic Poisson Process with affine intensity," Papers 1109.2884, arXiv.org, revised Sep 2011.
  • Handle: RePEc:arx:papers:1109.2884
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1109.2884
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basu, Sankarshan & Dassios, Angelos, 2002. "A Cox process with log-normal intensity," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 297-302, October.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Dassios, Angelos & Jang, Jiwook, 2008. "The distribution of the interval between events of a Cox process with shot noise intensity," LSE Research Online Documents on Economics 31864, London School of Economics and Political Science, LSE Library.
    4. Basu, Sankarshan & Dassios, Angelos, 2002. "A Cox process with log-normal intensity," LSE Research Online Documents on Economics 16375, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alan Genaro & Adilson Simonis, 2015. "Estimating doubly stochastic Poisson process with affine intensities by Kalman filter," Statistical Papers, Springer, vol. 56(3), pages 723-748, August.
    2. Jang, Jiwook & Qu, Yan & Zhao, Hongbiao & Dassios, Angelos, 2023. "A Cox model for gradually disappearing events," LSE Research Online Documents on Economics 112754, London School of Economics and Political Science, LSE Library.
    3. Jiwook Jang & Jong Jun Park & Hyun Jin Jang, 2018. "Catastrophe Insurance Derivatives Pricing Using A Cox Process With Jump Diffusion Cir Intensity," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-20, November.
    4. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    5. Mario Teixeira Parente & Georg Brandl & Christian Franz & Uwe Stuhr & Marina Ganeva & Astrid Schneidewind, 2023. "Active learning-assisted neutron spectroscopy with log-Gaussian processes," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Tin Lok James Ng & Thomas Brendan Murphy, 2021. "Model-based Clustering of Count Processes," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 188-211, July.
    7. Yiqing Chen, 2019. "A Renewal Shot Noise Process with Subexponential Shot Marks," Risks, MDPI, vol. 7(2), pages 1-8, June.
    8. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    9. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    10. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    11. Álvarez Echeverría Francisco & López Sarabia Pablo & Venegas Martínez Francisco, 2012. "Valuación financiera de proyectos de inversión en nuevas tecnologías con opciones reales," Contaduría y Administración, Accounting and Management, vol. 57(3), pages 115-145, julio-sep.
    12. Hisashi Nakamura & Wataru Nozawa & Akihiko Takahashi, 2009. "Macroeconomic Implications of Term Structures of Interest Rates Under Stochastic Differential Utility with Non-Unitary EIS," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(3), pages 231-263, September.
    13. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    14. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    15. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    16. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    17. Gollier, Christian, 2002. "Time Horizon and the Discount Rate," Journal of Economic Theory, Elsevier, vol. 107(2), pages 463-473, December.
    18. Henry, Olan T. & Olekalns, Nilss & Suardi, Sandy, 2007. "Testing for rate dependence and asymmetry in inflation uncertainty: Evidence from the G7 economies," Economics Letters, Elsevier, vol. 94(3), pages 383-388, March.
    19. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    20. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1109.2884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.