IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2019i4p103-d276169.html
   My bibliography  Save this article

A Generalised CIR Process with Externally-Exciting and Self-Exciting Jumps and Its Applications in Insurance and Finance

Author

Listed:
  • Angelos Dassios

    (Department of Statistics, London School of Economics, Houghton Street, London WC2A 2AE, UK)

  • Jiwook Jang

    (Department of Actuarial Studies & Business Analytics, Macquarie Business School, Macquarie University, Sydney NSW 2109, Australia)

  • Hongbiao Zhao

    (School of Statistics and Management, Shanghai University of Finance and Economics, No. 777 Guoding Road, Shanghai 200433, China)

Abstract

In this paper, we study a generalised CIR process with externally-exciting and self-exciting jumps, and focus on the distributional properties and applications of this process and its aggregated process. The aim of the paper is to introduce a more general process that includes many models in the literature with self-exciting and external-exciting jumps. The first and second moments of this jump-diffusion process are used to calculate the insurance premium based on mean-variance principle. The Laplace transform of aggregated process is derived, and this leads to an application for pricing default-free bonds which could capture the impacts of both exogenous and endogenous shocks. Illustrative numerical examples and comparisons with other models are also provided.

Suggested Citation

  • Angelos Dassios & Jiwook Jang & Hongbiao Zhao, 2019. "A Generalised CIR Process with Externally-Exciting and Self-Exciting Jumps and Its Applications in Insurance and Finance," Risks, MDPI, vol. 7(4), pages 1-18, October.
  • Handle: RePEc:gam:jrisks:v:7:y:2019:i:4:p:103-:d:276169
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/4/103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/4/103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. V. Chavez-Demoulin & A. C. Davison & A. J. McNeil, 2005. "Estimating value-at-risk: a point process approach," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 227-234.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Jang, Ji-Wook & Krvavych, Yuriy, 2004. "Arbitrage-free premium calculation for extreme losses using the shot noise process and the Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 97-111, August.
    4. Thibault Jaisson & Mathieu Rosenbaum, 2013. "Limit theorems for nearly unstable Hawkes processes," Papers 1310.2033, arXiv.org, revised Mar 2015.
    5. Ji‐Wook Jang, 2004. "Martingale Approach for Moments of Discounted Aggregate Claims," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 71(2), pages 201-211, June.
    6. Jang, Jiwook & Dassios, Angelos, 2013. "A bivariate shot noise self-exciting process for insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 524-532.
    7. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    8. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    9. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    10. Jang, Jiwook, 2007. "Jump diffusion processes and their applications in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 62-70, July.
    11. Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
    12. Aït-Sahalia, Yacine & Laeven, Roger J.A. & Pelizzon, Loriana, 2014. "Mutual excitation in Eurozone sovereign CDS," Journal of Econometrics, Elsevier, vol. 183(2), pages 151-167.
    13. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    14. Leveille, Ghislain & Garrido, Jose, 2001. "Moments of compound renewal sums with discounted claims," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 217-231, April.
    15. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    16. Dassios, Angelos & Zhao, Hongbiao, 2012. "Ruin by dynamic contagion claims," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 93-106.
    17. Gabriele Stabile & Giovanni Luca Torrisi, 2010. "Risk Processes with Non-stationary Hawkes Claims Arrivals," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 415-429, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kira Henshaw & Corina Constantinescu & Olivier Menoukeu Pamen, 2020. "Stochastic Mortality Modelling for Dependent Coupled Lives," Risks, MDPI, vol. 8(1), pages 1-28, February.
    2. Luis A. Souto Arias & Pasquale Cirillo & Cornelis W. Oosterlee, 2022. "A new self-exciting jump-diffusion process for option pricing," Papers 2205.13321, arXiv.org, revised Feb 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2019. "A generalised CIR process with externally-exciting and self-exciting jumps and its applications in insurance and finance," LSE Research Online Documents on Economics 102043, London School of Economics and Political Science, LSE Library.
    2. Jang, Jiwook & Dassios, Angelos, 2013. "A bivariate shot noise self-exciting process for insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 524-532.
    3. Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
    4. Dassios, Angelos & Zhao, Hongbiao, 2017. "A generalised contagion process with an application to credit risk," LSE Research Online Documents on Economics 68558, London School of Economics and Political Science, LSE Library.
    5. Jiwook Jang & Rosy Oh, 2020. "A Bivariate Compound Dynamic Contagion Process for Cyber Insurance," Papers 2007.04758, arXiv.org.
    6. Dassios, Angelos & Zhao, Hongbiao, 2017. "Efficient simulation of clustering jumps with CIR intensity," LSE Research Online Documents on Economics 74205, London School of Economics and Political Science, LSE Library.
    7. Angelos Dassios & Hongbiao Zhao, 2017. "Efficient Simulation of Clustering Jumps with CIR Intensity," Operations Research, INFORMS, vol. 65(6), pages 1494-1515, December.
    8. Hainaut, Donatien, 2016. "A bivariate Hawkes process for interest rate modeling," Economic Modelling, Elsevier, vol. 57(C), pages 180-196.
    9. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    10. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Modeling microstructure price dynamics with symmetric Hawkes and diffusion model using ultra-high-frequency stock data," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 154-183.
    11. Jang, Jiwook & Dassios, Angelos & Zhao, Hongbiao, 2018. "Moments of renewal shot-noise processes and their applications," LSE Research Online Documents on Economics 87428, London School of Economics and Political Science, LSE Library.
    12. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    13. Ulrich Horst & Wei Xu, 2024. "Functional Limit Theorems for Hawkes Processes," Papers 2401.11495, arXiv.org, revised Nov 2024.
    14. Giacomo Bormetti & Lucio Maria Calcagnile & Michele Treccani & Fulvio Corsi & Stefano Marmi & Fabrizio Lillo, 2015. "Modelling systemic price cojumps with Hawkes factor models," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1137-1156, July.
    15. Jang, Jiwook, 2007. "Jump diffusion processes and their applications in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 62-70, July.
    16. Angelos Dassios & Xin Dong, 2014. "Stationarity of Bivariate Dynamic Contagion Processes," Papers 1405.5842, arXiv.org.
    17. Buccioli, Alice & Kokholm, Thomas & Nicolosi, Marco, 2019. "Expected shortfall and portfolio management in contagious markets," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 100-115.
    18. Yang Shen & Bin Zou, 2021. "Mean-Variance Portfolio Selection in Contagious Markets," Papers 2110.09417, arXiv.org.
    19. Hainaut, Donatien, 2023. "A mutually exciting rough jump diffusion for financial modelling," LIDAM Discussion Papers ISBA 2023011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Rachele Foschi & Francesca Lilla & Cecilia Mancini, 2020. "Warnings about future jumps: properties of the exponential Hawkes model," Working Papers 13/2020, University of Verona, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:4:p:103-:d:276169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.