IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/31864.html
   My bibliography  Save this paper

The distribution of the interval between events of a Cox process with shot noise intensity

Author

Listed:
  • Dassios, Angelos
  • Jang, Jiwook

Abstract

Applying piecewise deterministic Markov processes theory, the probability generating function of a Cox process, incorporating with shot noise process as the claim intensity, is obtained. We also derive the Laplace transform of the distribution of the shot noise process at claim jump times, using stationary assumption of the shot noise process at any times. Based on this Laplace transform and from the probability generating function of a Cox process with shot noise intensity, we obtain the distribution of the interval of a Cox process with shot noise intensity for insurance claims and its moments, that is, mean and variance.

Suggested Citation

  • Dassios, Angelos & Jang, Jiwook, 2008. "The distribution of the interval between events of a Cox process with shot noise intensity," LSE Research Online Documents on Economics 31864, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:31864
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/31864/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alan Genaro & Adilson Simonis, 2015. "Estimating doubly stochastic Poisson process with affine intensities by Kalman filter," Statistical Papers, Springer, vol. 56(3), pages 723-748, August.
    2. Alan De Genaro Dario & Adilson Simonis, 2011. "Properties of Doubly Stochastic Poisson Process with affine intensity," Papers 1109.2884, arXiv.org, revised Sep 2011.
    3. Ghislain Léveillé & Emmanuel Hamel, 2018. "Conditional, Non-Homogeneous and Doubly Stochastic Compound Poisson Processes with Stochastic Discounted Claims," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 353-368, March.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:31864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.