IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v4y2016i4p45-d84286.html
   My bibliography  Save this article

Predicting Human Mortality: Quantitative Evaluation of Four Stochastic Models

Author

Listed:
  • Anastasia Novokreshchenova

    (Dipartimento di Statistica e Matematica Applicata, corso Unione Sovietica 218 bis, Torino 10134, Italy)

Abstract

In this paper, we quantitatively compare the forecasts from four different mortality models. We consider one discrete-time model proposed by Lee and Carter (1992) and three continuous-time models: the Wills and Sherris (2011) model, the Feller process and the Ornstein-Uhlenbeck (OU) process. The first two models estimate the whole surface of mortality simultaneously, while in the latter two, each generation is modelled and calibrated separately. We calibrate the models to UK and Australian population data. We find that all the models show relatively similar absolute total error for a given dataset, except the Lee-Carter model, whose performance differs significantly. To evaluate the forecasting performance we therefore look at two alternative measures: the relative error between the forecasted and the actual mortality rates and the percentage of actual mortality rates which fall within a prediction interval. In terms of the prediction intervals, the results are more divergent since each model implies a different structure for the variance of mortality rates. According to our experiments, the Wills and Sherris model produces superior results in terms of the prediction intervals. However, in terms of the mean absolute error, the OU and the Feller processes perform better. The forecasting performance of the Lee Carter model is mostly dependent on the choice of the dataset.

Suggested Citation

  • Anastasia Novokreshchenova, 2016. "Predicting Human Mortality: Quantitative Evaluation of Four Stochastic Models," Risks, MDPI, vol. 4(4), pages 1-28, December.
  • Handle: RePEc:gam:jrisks:v:4:y:2016:i:4:p:45-:d:84286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/4/4/45/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/4/4/45/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Plat, Richard, 2009. "On stochastic mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 393-404, December.
    4. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
    5. Schrager, David F., 2006. "Affine stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 81-97, February.
    6. Jevtić, Petar & Luciano, Elisa & Vigna, Elena, 2013. "Mortality surface by means of continuous time cohort models," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 122-133.
    7. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    8. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    9. Ngai, Andrew & Sherris, Michael, 2011. "Longevity risk management for life and variable annuities: The effectiveness of static hedging using longevity bonds and derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 100-114, July.
    10. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    11. O’Hare, Colin & Li, Youwei, 2012. "Explaining young mortality," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 12-25.
    12. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    13. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    14. Kevin Dowd & Andrew Cairns & David Blake & Guy Coughlan & David Epstein & Marwa Khalaf-Allah, 2010. "Backtesting Stochastic Mortality Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(3), pages 281-298.
    15. Dowd, Kevin & Cairns, Andrew J.G. & Blake, David & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2010. "Evaluating the goodness of fit of stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 255-265, December.
    16. Luciano, Elisa & Regis, Luca & Vigna, Elena, 2012. "Delta–Gamma hedging of mortality and interest rate risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 402-412.
    17. Wills, Samuel & Sherris, Michael, 2010. "Securitization, structuring and pricing of longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 173-185, February.
    18. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stöver, Britta, 2019. "Estimating the transition time from school to university using a stochastic mortality model," Hannover Economic Papers (HEP) dp-657, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    2. Zhenmin Cheng & Wanwan Si & Zhiwei Xu & Kaibiao Xiang, 2022. "Prediction of China’s Population Mortality under Limited Data," IJERPH, MDPI, vol. 19(19), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Zhou, Hongjuan & Zhou, Kenneth Q. & Li, Xianping, 2022. "Stochastic mortality dynamics driven by mixed fractional Brownian motion," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 218-238.
    4. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    5. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2017. "Retirement spending and biological age," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 58-76.
    6. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2017. "Cohort effects in mortality modelling: a Bayesian state-space approach," Papers 1703.08282, arXiv.org.
    7. Liu, Yanxin & Li, Johnny Siu-Hang, 2018. "A strategy for hedging risks associated with period and cohort effects using q-forwards," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 267-285.
    8. Paola Biffi & Gian Clemente, 2014. "Selecting stochastic mortality models for the Italian population," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 255-286, October.
    9. Blake, David & Brockett, Patrick & Cox, Samuel & MacMinn, Richard, 2011. "Longevity risk and capital markets: The 2009-2010 update," MPRA Paper 28868, University Library of Munich, Germany.
    10. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    11. Colin O’hare & Youwei Li, 2017. "Models of mortality rates – analysing the residuals," Applied Economics, Taylor & Francis Journals, vol. 49(52), pages 5309-5323, November.
    12. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    13. O’Hare, Colin & Li, Youwei, 2012. "Explaining young mortality," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 12-25.
    14. Yang Chang & Michael Sherris, 2018. "Longevity Risk Management and the Development of a Value-Based Longevity Index," Risks, MDPI, vol. 6(1), pages 1-20, February.
    15. Bravo, Jorge M. & Nunes, João Pedro Vidal, 2021. "Pricing longevity derivatives via Fourier transforms," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 81-97.
    16. David Atance & Alejandro Balbás & Eliseo Navarro, 2020. "Constructing dynamic life tables with a single-factor model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 787-825, December.
    17. Li, Han & O’Hare, Colin, 2017. "Semi-parametric extensions of the Cairns–Blake–Dowd model: A one-dimensional kernel smoothing approach," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 166-176.
    18. Homa Magdalena, 2020. "Mathematical Reserves vs Longevity Risk in Life Insurances," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(1), pages 23-38, March.
    19. Stéphane Loisel, 2010. "Understanding, Modeling and Managing Longevity Risk: Key Issues and Main Challenges," Post-Print hal-00517902, HAL.
    20. David Blake & Christophe Courbage & Richard MacMinn & Michael Sherris, 2011. "Longevity Risk and Capital Markets: The 2010–2011 Update," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(4), pages 489-500, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:4:y:2016:i:4:p:45-:d:84286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.