IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2019i1p2-d194650.html
   My bibliography  Save this article

Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives

Author

Listed:
  • Man Chung Fung

    (The Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, Sydney, NSW 2113, Australia)

  • Katja Ignatieva

    (Business School, Risk and Actuarial Studies, Randwick, Sydney, NSW 2052, Australia)

  • Michael Sherris

    (Risk and Actuarial Studies and Centre of Excellence in Population Ageing Research (CEPAR), Business School, University of New South Wales, Randwick, Sydney, NSW 2052, Australia)

Abstract

This paper assesses the hedge effectiveness of an index-based longevity swap and a longevity cap for a life annuity portfolio. Although longevity swaps are a natural instrument for hedging longevity risk, derivatives with non-linear pay-offs, such as longevity caps, provide more effective downside protection. A tractable stochastic mortality model with age dependent drift and volatility is developed and analytical formulae for prices of longevity derivatives are derived. The model is calibrated using Australian mortality data. The hedging of the life annuity portfolio is comprehensively assessed for a range of assumptions for the longevity risk premium, the term to maturity of the hedging instruments, as well as the size of the underlying annuity portfolio. The results compare the risk management benefits and costs of longevity derivatives with linear and nonlinear payoff structures.

Suggested Citation

  • Man Chung Fung & Katja Ignatieva & Michael Sherris, 2019. "Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives," Risks, MDPI, vol. 7(1), pages 1-25, January.
  • Handle: RePEc:gam:jrisks:v:7:y:2019:i:1:p:2-:d:194650
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ryan Donnelly & Sebastian Jaimungal & Dmitri H. Rubisov, 2014. "Valuing guaranteed withdrawal benefits with stochastic interest rates and volatility," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 369-382, February.
    2. Enrico Biffis & David Blake & Lorenzo Pitotti & Ariel Sun, 2016. "The Cost of Counterparty Risk and Collateralization in Longevity Swaps," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(2), pages 387-419, June.
    3. Jingjiang Peng & Kwai Sun Leung & Yue Kuen Kwok, 2012. "Pricing guaranteed minimum withdrawal benefits under stochastic interest rates," Quantitative Finance, Taylor & Francis Journals, vol. 12(6), pages 933-941, October.
    4. David Blake & Andrew Cairns & Kevin Dowd & Richard MacMinn, 2006. "Longevity Bonds: Financial Engineering, Valuation, and Hedging," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 647-672, December.
    5. Ngai, Andrew & Sherris, Michael, 2011. "Longevity risk management for life and variable annuities: The effectiveness of static hedging using longevity bonds and derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 100-114, July.
    6. Ignatieva, Katja & Song, Andrew & Ziveyi, Jonathan, 2016. "Pricing and hedging of guaranteed minimum benefits under regime-switching and stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 286-300.
    7. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    8. Boyer, M. Martin & Stentoft, Lars, 2013. "If we can simulate it, we can insure it: An application to longevity risk management," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 35-45.
    9. Chou-Wen Wang & Sharon S. Yang, 2013. "Pricing Survivor Derivatives With Cohort Mortality Dependence Under the Lee–Carter Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 1027-1056, December.
    10. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    11. Fung, Man Chung & Ignatieva, Katja & Sherris, Michael, 2014. "Systematic mortality risk: An analysis of guaranteed lifetime withdrawal benefits in variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 103-115.
    12. Enrico Biffis & David Blake, 2014. "Keeping Some Skin in the Game: How to Start a Capital Market in Longevity Risk Transfers," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 14-21.
    13. Blake, D. & Cairns, A. J. G. & Dowd, K., 2006. "Living with Mortality: Longevity Bonds and Other Mortality-Linked Securities," British Actuarial Journal, Cambridge University Press, vol. 12(1), pages 153-197, March.
    14. Andrew J.G. Cairns & Kevin Dowd & David Blake & Guy D. Coughlan, 2014. "Longevity hedge effectiveness: a decomposition," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 217-235, February.
    15. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    16. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
    17. Cairns, Andrew J.G., 2011. "Modelling and management of longevity risk: Approximations to survivor functions and dynamic hedging," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 438-453.
    18. Cocco, João F. & Gomes, Francisco J., 2012. "Longevity risk, retirement savings, and financial innovation," Journal of Financial Economics, Elsevier, vol. 103(3), pages 507-529.
    19. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Longevity risk in portfolios of pension annuities," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 505-519, April.
    20. Bauer, Daniel & Börger, Matthias & Ruß, Jochen, 2010. "On the pricing of longevity-linked securities," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 139-149, February.
    21. Kevin Dowd, 2003. "Survivor Bonds: A Comment on Blake and Burrows," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(2), pages 339-348, June.
    22. Luciano, Elisa & Regis, Luca & Vigna, Elena, 2012. "Delta–Gamma hedging of mortality and interest rate risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 402-412.
    23. Yao Tung Huang & Yue Kuen Kwok, 2016. "Regression-based Monte Carlo methods for stochastic control models: variable annuities with lifelong guarantees," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 905-928, June.
    24. Johnny Li & Mary Hardy, 2011. "Measuring Basis Risk in Longevity Hedges," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 177-200.
    25. Meyricke, Ramona & Sherris, Michael, 2014. "Longevity risk, cost of capital and hedging for life insurers under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 147-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cláudia Simões & Luís Oliveira & Jorge M. Bravo, 2021. "Immunization Strategies for Funding Multiple Inflation-Linked Retirement Income Benefits," Risks, MDPI, vol. 9(4), pages 1-28, March.
    2. Pauline Milaure Ngugnie Diffouo & Pierre Devolder, 2020. "Longevity Risk Measurement of Life Annuity Products," Risks, MDPI, vol. 8(1), pages 1-16, March.
    3. Bravo, Jorge M. & Nunes, João Pedro Vidal, 2021. "Pricing longevity derivatives via Fourier transforms," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 81-97.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Man Chung Fung & Katja Ignatieva & Michael Sherris, 2015. "Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives," Papers 1508.00090, arXiv.org.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. Bravo, Jorge M. & Nunes, João Pedro Vidal, 2021. "Pricing longevity derivatives via Fourier transforms," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 81-97.
    5. Kallestrup-Lamb, Malene & Søgaard Laursen, Nicolai, 2024. "Longevity hedge effectiveness using socioeconomic indices," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 242-251.
    6. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    7. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 301-319.
    8. Liu, Yanxin & Li, Johnny Siu-Hang, 2018. "A strategy for hedging risks associated with period and cohort effects using q-forwards," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 267-285.
    9. Leung, Melvern & Fung, Man Chung & O’Hare, Colin, 2018. "A comparative study of pricing approaches for longevity instruments," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 95-116.
    10. Rihab Bedoui & Islem Kedidi, 2018. "Modeling Longevity Risk using Consistent Dynamics Affine Mortality Models," Working Papers hal-01678050, HAL.
    11. Börger, Matthias & Freimann, Arne & Ruß, Jochen, 2021. "A combined analysis of hedge effectiveness and capital efficiency in longevity hedging," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 309-326.
    12. Zhou, Kenneth Q. & Li, Johnny Siu-Hang, 2019. "Delta-hedging longevity risk under the M7–M5 model: The impact of cohort effect uncertainty and population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 1-21.
    13. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    14. Bravo, Jorge Miguel & El Mekkaoui de Freitas, Najat, 2018. "Valuation of longevity-linked life annuities," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 212-229.
    15. Susanna Levantesi & Massimiliano Menzietti, 2017. "Maximum Market Price of Longevity Risk under Solvency Regimes: The Case of Solvency II," Risks, MDPI, vol. 5(2), pages 1-21, May.
    16. Broeders, Dirk & Mehlkopf, Roel & van Ool, Annick, 2021. "The economics of sharing macro-longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 440-458.
    17. Meyricke, Ramona & Sherris, Michael, 2014. "Longevity risk, cost of capital and hedging for life insurers under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 147-155.
    18. Tan, Ken Seng & Weng, Chengguo & Zhang, Jinggong, 2022. "Optimal dynamic longevity hedge with basis risk," European Journal of Operational Research, Elsevier, vol. 297(1), pages 325-337.
    19. Hao, Xuemiao & Liang, Chunli & Wei, Linghua, 2017. "Evaluation of credit value adjustment in K-forward," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 95-103.
    20. Helena Aro & Teemu Pennanen, 2013. "Liability-driven investment in longevity risk management," Papers 1307.8261, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:1:p:2-:d:194650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.