IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v71y2017i1p71-80.html
   My bibliography  Save this article

Bridging the Gap: A Generalized Stochastic Process for Count Data

Author

Listed:
  • Li Zhu
  • Kimberly F. Sellers
  • Darcy Steeg Morris
  • Galit Shmueli

Abstract

The Bernoulli and Poisson processes are two popular discrete count processes; however, both rely on strict assumptions. We instead propose a generalized homogenous count process (which we name the Conway–Maxwell–Poisson or COM-Poisson process) that not only includes the Bernoulli and Poisson processes as special cases, but also serves as a flexible mechanism to describe count processes that approximate data with over- or under-dispersion. We introduce the process and an associated generalized waiting time distribution with several real-data applications to illustrate its flexibility for a variety of data structures. We consider model estimation under different scenarios of data availability, and assess performance through simulated and real datasets. This new generalized process will enable analysts to better model count processes where data dispersion exists in a more accommodating and flexible manner.

Suggested Citation

  • Li Zhu & Kimberly F. Sellers & Darcy Steeg Morris & Galit Shmueli, 2017. "Bridging the Gap: A Generalized Stochastic Process for Count Data," The American Statistician, Taylor & Francis Journals, vol. 71(1), pages 71-80, January.
  • Handle: RePEc:taf:amstat:v:71:y:2017:i:1:p:71-80
    DOI: 10.1080/00031305.2016.1234976
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2016.1234976
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2016.1234976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kimberly F. Sellers & Andrew W. Swift & Kimberly S. Weems, 2017. "A flexible distribution class for count data," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-21, December.
    2. Born, Alexander & Kovachka, Nikoleta & Lessmann, Stefan & Seow, Hsin-Vonn, 2018. "Price Management in the Used-Car Market: An Evaluation of Survival Analysis," IRTG 1792 Discussion Papers 2018-065, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Geng, Xi & Xia, Aihua, 2022. "When is the Conway–Maxwell–Poisson distribution infinitely divisible?," Statistics & Probability Letters, Elsevier, vol. 181(C).
    4. Valdés, Rosa Maria Arnaldo & Comendador, Victor Fernando Gómez & Castán, Javier Alberto Perez & Sanz, Alvaro Rodriguez & Sanz, Luis Perez & Ayra, Eduardo Sanchez & Nieto, Francisco Javier Saez, 2019. "Development of safety performance functions (SPFs) to analyse and predict aircraft loss of separation in accordance with the characteristics of the airspace," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 143-161.
    5. Kimberly F. Sellers & Ali Arab & Sean Melville & Fanyu Cui, 2021. "A flexible univariate moving average time-series model for dispersed count data," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:71:y:2017:i:1:p:71-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.