IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v6y2023i3p59-955d1242517.html
   My bibliography  Save this article

A Family of Finite Mixture Distributions for Modelling Dispersion in Count Data

Author

Listed:
  • Seng Huat Ong

    (Institute of Actuarial Science and Data Analytics, UCSI University, Kuala Lumpur 56000, Malaysia
    Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Shin Zhu Sim

    (School of Mathematical Sciences, University of Nottingham Malaysia, Semenyih 43500, Malaysia)

  • Shuangzhe Liu

    (Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia)

  • Hari M. Srivastava

    (Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
    Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
    Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, AZ1007 Baku, Azerbaijan)

Abstract

This paper considers the construction of a family of discrete distributions with the flexibility to cater for under-, equi- and over-dispersion in count data using a finite mixture model based on standard distributions. We are motivated to introduce this family because its simple finite mixture structure adds flexibility and facilitates application and use in analysis. The family of distributions is exemplified using a mixture of negative binomial and shifted negative binomial distributions. Some basic and probabilistic properties are derived. We perform hypothesis testing for equi-dispersion and simulation studies of their power and consider parameter estimation via maximum likelihood and probability-generating-function-based methods. The utility of the distributions is illustrated via their application to real biological data sets exhibiting under-, equi- and over-dispersion. It is shown that the distribution fits better than the well-known generalized Poisson and COM–Poisson distributions for handling under-, equi- and over-dispersion in count data.

Suggested Citation

  • Seng Huat Ong & Shin Zhu Sim & Shuangzhe Liu & Hari M. Srivastava, 2023. "A Family of Finite Mixture Distributions for Modelling Dispersion in Count Data," Stats, MDPI, vol. 6(3), pages 1-14, September.
  • Handle: RePEc:gam:jstats:v:6:y:2023:i:3:p:59-955:d:1242517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/6/3/59/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/6/3/59/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kimberly F. Sellers & Sharad Borle & Galit Shmueli, 2012. "The COM‐Poisson model for count data: a survey of methods and applications," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 28(2), pages 104-116, March.
    2. Subrata Chakraborty & Tomoaki Imoto, 2016. "Extended Conway-Maxwell-Poisson distribution and its properties and applications," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-19, December.
    3. Kimberly F. Sellers & Darcy S. Morris, 2017. "Underdispersion models: Models that are “under the radar”," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(24), pages 12075-12086, December.
    4. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    5. Kimberly F. Sellers & Stephen J. Peng & Ali Arab, 2020. "A Flexible Univariate Autoregressive Time‐Series Model for Dispersed Count Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(3), pages 436-453, May.
    6. Dexter Cahoy & Elvira Di Nardo & Federico Polito, 2021. "Flexible models for overdispersed and underdispersed count data," Statistical Papers, Springer, vol. 62(6), pages 2969-2990, December.
    7. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy & Bazán, Jorge, 2014. "A COM–Poisson type generalization of the binomial distribution and its properties and applications," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 158-166.
    8. Kimberly F. Sellers & Andrew W. Swift & Kimberly S. Weems, 2017. "A flexible distribution class for count data," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-21, December.
    9. S. Chakraborty & S. H. Ong, 2016. "A COM-Poisson-type generalization of the negative binomial distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(14), pages 4117-4135, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morris, Darcy Steeg & Raim, Andrew M. & Sellers, Kimberly F., 2020. "A Conway–Maxwell-multinomial distribution for flexible modeling of clustered categorical data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    2. Kimberly F. Sellers & Ali Arab & Sean Melville & Fanyu Cui, 2021. "A flexible univariate moving average time-series model for dispersed count data," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-12, December.
    3. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    4. Douglas Toledo & Cristiane Akemi Umetsu & Antonio Fernando Monteiro Camargo & Idemauro Antonio Rodrigues Lara, 2022. "Flexible models for non-equidispersed count data: comparative performance of parametric models to deal with underdispersion," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 473-497, September.
    5. Xun-Jian Li & Guo-Liang Tian & Mingqian Zhang & George To Sum Ho & Shuang Li, 2023. "Modeling Under-Dispersed Count Data by the Generalized Poisson Distribution via Two New MM Algorithms," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    6. Bedbur, S. & Kamps, U., 2023. "Uniformly most powerful unbiased tests for the dispersion parameter of the Conway–Maxwell–Poisson distribution," Statistics & Probability Letters, Elsevier, vol. 196(C).
    7. Subrata Chakraborty & S. H. Ong, 2017. "Mittag - Leffler function distribution - a new generalization of hyper-Poisson distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
    8. Kimberly F. Sellers & Andrew W. Swift & Kimberly S. Weems, 2017. "A flexible distribution class for count data," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-21, December.
    9. Geng, Xi & Xia, Aihua, 2022. "When is the Conway–Maxwell–Poisson distribution infinitely divisible?," Statistics & Probability Letters, Elsevier, vol. 181(C).
    10. Rodrigues, Josemar & Bazán, Jorge L. & Suzuki, Adriano K. & Balakrishnan, Narayanaswamy, 2016. "The Bayesian restricted Conway–Maxwell-Binomial model to control dispersion in count data," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 281-288.
    11. Boris Forthmann & Philipp Doebler, 2021. "Reliability of researcher capacity estimates and count data dispersion: a comparison of Poisson, negative binomial, and Conway-Maxwell-Poisson models," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3337-3354, April.
    12. Kimberly F. Sellers & Tong Li & Yixuan Wu & Narayanaswamy Balakrishnan, 2021. "A Flexible Multivariate Distribution for Correlated Count Data," Stats, MDPI, vol. 4(2), pages 1-19, April.
    13. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    14. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    15. Can Zhou & Yan Jiao & Joan Browder, 2019. "How much do we know about seabird bycatch in pelagic longline fisheries? A simulation study on the potential bias caused by the usually unobserved portion of seabird bycatch," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-19, August.
    16. Joseph B. Kadane & Ramayya Krishnan & Galit Shmueli, 2006. "A Data Disclosure Policy for Count Data Based on the COM-Poisson Distribution," Management Science, INFORMS, vol. 52(10), pages 1610-1617, October.
    17. Imelda Trejo & Nicolas W Hengartner, 2022. "A modified Susceptible-Infected-Recovered model for observed under-reported incidence data," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-23, February.
    18. Fernando Bonassi & Rafael Stern & Cláudia Peixoto & Sergio Wechsler, 2015. "Exchangeability and the law of maturity," Theory and Decision, Springer, vol. 78(4), pages 603-615, April.
    19. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    20. Dexter Cahoy & Elvira Di Nardo & Federico Polito, 2021. "Flexible models for overdispersed and underdispersed count data," Statistical Papers, Springer, vol. 62(6), pages 2969-2990, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:6:y:2023:i:3:p:59-955:d:1242517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.