IDEAS home Printed from https://ideas.repec.org/a/ibn/ijspjl/v9y2020i6p1.html
   My bibliography  Save this article

The New Bivariate Conway-Maxwell-Poisson Distribution Obtained by the Crossing Method

Author

Listed:
  • Rufin Bidounga
  • Evrand Giles Brunel Mandangui Maloumbi
  • Réolie Foxie Mizélé Kitoti
  • Dominique Mizère

Abstract

Kimberly et al. had proposed in 2016 a bivariate function as a bivariate Conway-Maxwell-Poisson distribution (COM-Poisson) using the generalized bivariate Poisson distribution and the probability generating functions of the follow distributions- bivariate bernoulli, bivariate Poisson, bivariate geometric and bivariate binomial. By examining this paper we have shown that this bivariate function is constant and it double series is divergent, when it should have been 1. To overcome this deadlock, we propose a new bivariate Conway-Maxwell-Poisson distribution which is definetely a probability distribution based on the crossing method, method highlighted by Elion et al. in 2016 and revisited by Batsindila et al. and Mandangui et al. in 2019. And this is the purpose of this paper. To this bivariate distribution is attached two generalized linear models (GLM) whose resolution allows us to highlight, not only the independence between the variables forming the couple, but also the effect of the factors (or predictors) on these variables. The resulting correlation is negative, zero or positive depending on the values of a parameter; in particular for the bivariate Poisson distribution according to Berkhout and Plug. A simulation of data will be given at the end of the article to illustrate the model.

Suggested Citation

  • Rufin Bidounga & Evrand Giles Brunel Mandangui Maloumbi & Réolie Foxie Mizélé Kitoti & Dominique Mizère, 2020. "The New Bivariate Conway-Maxwell-Poisson Distribution Obtained by the Crossing Method," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-1, November.
  • Handle: RePEc:ibn:ijspjl:v:9:y:2020:i:6:p:1
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/download/0/0/43714/46338
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/view/0/43714
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sellers, Kimberly F. & Morris, Darcy Steeg & Balakrishnan, Narayanaswamy, 2016. "Bivariate Conway–Maxwell–Poisson distribution: Formulation, properties, and inference," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 152-168.
    2. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    3. Peter Berkhout & Erik Plug, 2004. "A bivariate Poisson count data model using conditional probabilities," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(3), pages 349-364, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kimberly F. Sellers & Andrew W. Swift & Kimberly S. Weems, 2017. "A flexible distribution class for count data," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-21, December.
    2. Rajib Dey & M. Ataharul Islam, 2017. "A conditional count model for repeated count data and its application to GEE approach," Statistical Papers, Springer, vol. 58(2), pages 485-504, June.
    3. Kimberly F. Sellers & Tong Li & Yixuan Wu & Narayanaswamy Balakrishnan, 2021. "A Flexible Multivariate Distribution for Correlated Count Data," Stats, MDPI, vol. 4(2), pages 1-19, April.
    4. Morris, Darcy Steeg & Raim, Andrew M. & Sellers, Kimberly F., 2020. "A Conway–Maxwell-multinomial distribution for flexible modeling of clustered categorical data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    5. Mamode Khan Naushad & Rumjaun Wasseem & Sunecher Yuvraj & Jowaheer Vandna, 2017. "Computing with bivariate COM-Poisson model under different copulas," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 131-146, June.
    6. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    7. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    8. Can Zhou & Yan Jiao & Joan Browder, 2019. "How much do we know about seabird bycatch in pelagic longline fisheries? A simulation study on the potential bias caused by the usually unobserved portion of seabird bycatch," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-19, August.
    9. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    10. Joseph B. Kadane & Ramayya Krishnan & Galit Shmueli, 2006. "A Data Disclosure Policy for Count Data Based on the COM-Poisson Distribution," Management Science, INFORMS, vol. 52(10), pages 1610-1617, October.
    11. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    12. Jones, M.C. & Marchand, Éric, 2019. "Multivariate discrete distributions via sums and shares," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 83-93.
    13. Imelda Trejo & Nicolas W Hengartner, 2022. "A modified Susceptible-Infected-Recovered model for observed under-reported incidence data," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-23, February.
    14. Fernando Bonassi & Rafael Stern & Cláudia Peixoto & Sergio Wechsler, 2015. "Exchangeability and the law of maturity," Theory and Decision, Springer, vol. 78(4), pages 603-615, April.
    15. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    16. Dexter Cahoy & Elvira Di Nardo & Federico Polito, 2021. "Flexible models for overdispersed and underdispersed count data," Statistical Papers, Springer, vol. 62(6), pages 2969-2990, December.
    17. Krivitsky, Pavel N., 2017. "Using contrastive divergence to seed Monte Carlo MLE for exponential-family random graph models," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 149-161.
    18. Robert E. Gaunt & Satish Iyengar & Adri B. Olde Daalhuis & Burcin Simsek, 2019. "An asymptotic expansion for the normalizing constant of the Conway–Maxwell–Poisson distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 163-180, February.
    19. Subrata Chakraborty & S. H. Ong, 2017. "Mittag - Leffler function distribution - a new generalization of hyper-Poisson distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
    20. Jacek Osiewalski & Jerzy Marzec, 2019. "Joint modelling of two count variables when one of them can be degenerate," Computational Statistics, Springer, vol. 34(1), pages 153-171, March.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijspjl:v:9:y:2020:i:6:p:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.