IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v23y2020i1d10.1007_s10951-019-00630-w.html
   My bibliography  Save this article

A review of four decades of time-dependent scheduling: main results, new topics, and open problems

Author

Listed:
  • Stanisław Gawiejnowicz

    (Adam Mickiewicz University Poznań)

Abstract

This paper is a comprehensive review of the research conducted over the past four decades in the domain of time-dependent scheduling, where variable processing times of jobs depend on when the jobs start. The paper is divided into four parts. The first part recalls some definitions and notions, introduces terminology, and defines the main models of time-dependent job processing times and the notation that is used throughout the paper. The second part summarizes four decades of time-dependent scheduling research, focusing on the computational complexity of time-dependent scheduling problems, and algorithms solving these problems. The results are divided into groups with respect to the machine environment and illustrated by examples. The third part concentrates on new topics in time-dependent scheduling, such as two-agent time-dependent scheduling, mutually related time-dependent scheduling problems, and time-dependent scheduling games. The last part discusses the most important time-dependent scheduling problems which still await solution. The paper is completed by bibliographic notes and an extensive list of references.

Suggested Citation

  • Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
  • Handle: RePEc:spr:jsched:v:23:y:2020:i:1:d:10.1007_s10951-019-00630-w
    DOI: 10.1007/s10951-019-00630-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-019-00630-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-019-00630-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianzhong Du & Joseph Y.-T. Leung, 1990. "Minimizing Total Tardiness on One Machine is NP-Hard," Mathematics of Operations Research, INFORMS, vol. 15(3), pages 483-495, August.
    2. Chen, Qianqian & Lin, Ling & Tan, Zhiyi & Yan, Yujie, 2017. "Coordination mechanisms for scheduling games with proportional deterioration," European Journal of Operational Research, Elsevier, vol. 263(2), pages 380-389.
    3. Johnny C. Ho & Johnny S. Wong, 1995. "Makespan minimization for m parallel identical processors," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 935-948, September.
    4. Ocetkiewicz, Krzysztof M., 2010. "A FPTAS for minimizing total completion time in a single machine time-dependent scheduling problem," European Journal of Operational Research, Elsevier, vol. 203(2), pages 316-320, June.
    5. Gupta, Sushil K & Kunnathur, Anand S & Dandapani, Krishnan, 1987. "Optimal repayment policies for multiple loans," Omega, Elsevier, vol. 15(4), pages 323-330.
    6. Gawiejnowicz, Stanislaw & Kononov, Alexander, 2010. "Complexity and approximability of scheduling resumable proportionally deteriorating jobs," European Journal of Operational Research, Elsevier, vol. 200(1), pages 305-308, January.
    7. Gur Mosheiov, 1991. "V-Shaped Policies for Scheduling Deteriorating Jobs," Operations Research, INFORMS, vol. 39(6), pages 979-991, December.
    8. Kunnathur, Anand S. & Gupta, Sushil K., 1990. "Minimizing the makespan with late start penalties added to processing times in a single facility scheduling problem," European Journal of Operational Research, Elsevier, vol. 47(1), pages 56-64, July.
    9. Clyde L. Monma & Jeffrey B. Sidney, 1979. "Sequencing with Series-Parallel Precedence Constraints," Mathematics of Operations Research, INFORMS, vol. 4(3), pages 215-224, August.
    10. Ng, C.T. & Barketau, M.S. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2010. ""Product Partition" and related problems of scheduling and systems reliability: Computational complexity and approximation," European Journal of Operational Research, Elsevier, vol. 207(2), pages 601-604, December.
    11. Gawiejnowicz, Stanisław & Kurc, Wiesław, 2015. "Structural properties of time-dependent scheduling problems with the lp norm objective," Omega, Elsevier, vol. 57(PB), pages 196-202.
    12. Cheng, MingBao & Sun, ShiJie & He, LongMin, 2007. "Flow shop scheduling problems with deteriorating jobs on no-idle dominant machines," European Journal of Operational Research, Elsevier, vol. 183(1), pages 115-124, November.
    13. Alberto Bosio & Giovanni Righini, 2009. "A dynamic programming algorithm for the single-machine scheduling problem with release dates and deteriorating processing times," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(2), pages 271-280, May.
    14. E. L. Lawler & D. E. Wood, 1966. "Branch-and-Bound Methods: A Survey," Operations Research, INFORMS, vol. 14(4), pages 699-719, August.
    15. Leung, Joseph Y.-T. & Ng, C.T. & Cheng, T.C. Edwin, 2008. "Minimizing sum of completion times for batch scheduling of jobs with deteriorating processing times," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1090-1099, June.
    16. Ma, Ran & Tao, Jiping & Yuan, Jinjiang, 2016. "Online scheduling with linear deteriorating jobs to minimize the total weighted completion time," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 570-583.
    17. E. L. Lawler, 1973. "Optimal Sequencing of a Single Machine Subject to Precedence Constraints," Management Science, INFORMS, vol. 19(5), pages 544-546, January.
    18. S Gawiejnowicz & W-C Lee & C-L Lin & C-C Wu, 2011. "Single-machine scheduling of proportionally deteriorating jobs by two agents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1983-1991, November.
    19. Sid Browne & Uri Yechiali, 1990. "Scheduling Deteriorating Jobs on a Single Processor," Operations Research, INFORMS, vol. 38(3), pages 495-498, June.
    20. Wieslaw Kubiak & Steef van de Velde, 1998. "Scheduling deteriorating jobs to minimize makespan," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(5), pages 511-523, August.
    21. Shisheng Li, 2011. "Scheduling Proportionally Deteriorating Jobs In Two-Machine Open Shop With A Non-Bottleneck Machine," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 28(05), pages 623-631.
    22. A A K Jeng & B M T Lin, 2007. "A note on parallel-machine scheduling with deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(6), pages 824-826, June.
    23. C. A. Holloway & R. T. Nelson, 1974. "Job Shop Scheduling with Due Dates and Variable Processing Times," Management Science, INFORMS, vol. 20(9), pages 1264-1275, May.
    24. Lee, Chung-Yee & Lin, Chen-Sin, 2001. "Single-machine scheduling with maintenance and repair rate-modifying activities," European Journal of Operational Research, Elsevier, vol. 135(3), pages 493-513, December.
    25. Ji, Min & Cheng, T.C.E., 2010. "Batch scheduling of simple linear deteriorating jobs on a single machine to minimize makespan," European Journal of Operational Research, Elsevier, vol. 202(1), pages 90-98, April.
    26. Nir Halman & Diego Klabjan & Mohamed Mostagir & Jim Orlin & David Simchi-Levi, 2009. "A Fully Polynomial-Time Approximation Scheme for Single-Item Stochastic Inventory Control with Discrete Demand," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 674-685, August.
    27. Anna Arigliano & Gianpaolo Ghiani & Antonio Grieco & Emanuela Guerriero, 2017. "Single-machine time-dependent scheduling problems with fixed rate-modifying activities and resumable jobs," 4OR, Springer, vol. 15(2), pages 201-215, June.
    28. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    29. Zhao, Chuanli & Tang, Hengyong, 2012. "Two-machine flow shop scheduling with deteriorating jobs and chain precedence constraints," International Journal of Production Economics, Elsevier, vol. 136(1), pages 131-136.
    30. J-J Wang & J-B Wang & F Liu, 2011. "Parallel machines scheduling with a deteriorating maintenance activity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1898-1902, October.
    31. Ji, Min & Cheng, T.C.E., 2008. "Parallel-machine scheduling with simple linear deterioration to minimize total completion time," European Journal of Operational Research, Elsevier, vol. 188(2), pages 342-347, July.
    32. Koulamas, Christos, 2010. "The single-machine total tardiness scheduling problem: Review and extensions," European Journal of Operational Research, Elsevier, vol. 202(1), pages 1-7, April.
    33. Jean-Claude Picard & Maurice Queyranne, 1978. "The Time-Dependent Traveling Salesman Problem and Its Application to the Tardiness Problem in One-Machine Scheduling," Operations Research, INFORMS, vol. 26(1), pages 86-110, February.
    34. J-B Wang & J-J Wang & P Ji, 2011. "Scheduling jobs with chain precedence constraints and deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1765-1770, September.
    35. Sun, Lin-Hui & Sun, Lin-Yan & Wang, Ming-Zheng & Wang, Ji-Bo, 2012. "Flow shop makespan minimization scheduling with deteriorating jobs under dominating machines," International Journal of Production Economics, Elsevier, vol. 138(1), pages 195-200.
    36. Vitaly A. Strusevich & Kabir Rustogi, 2017. "Scheduling with Time-Changing Effects and Rate-Modifying Activities," International Series in Operations Research and Management Science, Springer, number 978-3-319-39574-6, March.
    37. Cheng, Mingbao & Tadikamalla, Pandu R. & Shang, Jennifer & Zhang, Shaqing, 2014. "Bicriteria hierarchical optimization of two-machine flow shop scheduling problem with time-dependent deteriorating jobs," European Journal of Operational Research, Elsevier, vol. 234(3), pages 650-657.
    38. Li, Shisheng & Ng, C.T. & Cheng, T.C.E. & Yuan, Jinjiang, 2011. "Parallel-batch scheduling of deteriorating jobs with release dates to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 210(3), pages 482-488, May.
    39. Gawiejnowicz, Stanislaw, 2007. "Scheduling deteriorating jobs subject to job or machine availability constraints," European Journal of Operational Research, Elsevier, vol. 180(1), pages 472-478, July.
    40. Stanisław Gawiejnowicz & Alexander Kononov, 2014. "Isomorphic scheduling problems," Annals of Operations Research, Springer, vol. 213(1), pages 131-145, February.
    41. Schmidt, Gunter, 2000. "Scheduling with limited machine availability," European Journal of Operational Research, Elsevier, vol. 121(1), pages 1-15, February.
    42. Kang, Liying & Ng, C.T., 2007. "A note on a fully polynomial-time approximation scheme for parallel-machine scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 109(1-2), pages 180-184, September.
    43. Shioura, Akiyoshi & Shakhlevich, Natalia V. & Strusevich, Vitaly A., 2018. "Preemptive models of scheduling with controllable processing times and of scheduling with imprecise computation: A review of solution approaches," European Journal of Operational Research, Elsevier, vol. 266(3), pages 795-818.
    44. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.
    45. Cheng, T. C. E. & Ding, Q. & Lin, B. M. T., 2004. "A concise survey of scheduling with time-dependent processing times," European Journal of Operational Research, Elsevier, vol. 152(1), pages 1-13, January.
    46. Shi-Sheng Li & De-Liang Qian & Ren-Xia Chen, 2017. "Proportionate Flow Shop Scheduling with Rejection," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-13, August.
    47. Voutsinas, Theodore G. & Pappis, Costas P., 2002. "Scheduling jobs with values exponentially deteriorating over time," International Journal of Production Economics, Elsevier, vol. 79(3), pages 163-169, October.
    48. Lee, C. -Y. & Leon, V. J., 2001. "Machine scheduling with a rate-modifying activity," European Journal of Operational Research, Elsevier, vol. 128(1), pages 119-128, January.
    49. Sundararaghavan, P. S. & Kunnathur, A. S., 1994. "Single machine scheduling with start time dependent processing times: Some solvable cases," European Journal of Operational Research, Elsevier, vol. 78(3), pages 394-403, November.
    50. Jacek Blazewicz & Klaus H. Ecker & Erwin Pesch & Günter Schmidt & Malgorzata Sterna & Jan Weglarz, 2019. "Handbook on Scheduling," International Handbooks on Information Systems, Springer, edition 2, number 978-3-319-99849-7, November.
    51. Klamroth, Kathrin & Wiecek, Margaret M., 2001. "A time-dependent multiple criteria single-machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 135(1), pages 17-26, November.
    52. B Alidaee & N K Womer, 1999. "Scheduling with time dependent processing times: Review and extensions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(7), pages 711-720, July.
    53. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    54. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    55. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    56. Vitaly A. Strusevich & Kabir Rustogi, 2017. "Scheduling with Rate-Modifying Activities," International Series in Operations Research & Management Science, in: Scheduling with Time-Changing Effects and Rate-Modifying Activities, chapter 0, pages 317-331, Springer.
    57. Florian Jaehn & Helmut A. Sedding, 2016. "Scheduling with time-dependent discrepancy times," Journal of Scheduling, Springer, vol. 19(6), pages 737-757, December.
    58. Bachman, Aleksander & Janiak, Adam, 2000. "Minimizing maximum lateness under linear deterioration," European Journal of Operational Research, Elsevier, vol. 126(3), pages 557-566, November.
    59. Jacek Błażewicz & Klaus H. Ecker & Erwin Pesch & Günter Schmidt & Jan Węglarz, 2007. "Handbook on Scheduling," International Handbooks on Information Systems, Springer, number 978-3-540-32220-7, November.
    60. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    61. F. P. Kelly, 1982. "A Remark on Search and Sequencing Problems," Mathematics of Operations Research, INFORMS, vol. 7(1), pages 154-157, February.
    62. C. A. Holloway & R. T. Nelson, 1974. "Job Shop Scheduling with Due Dates and Overtime Capability," Management Science, INFORMS, vol. 21(1), pages 68-78, September.
    63. W-H Kuo & C-J Hsu & D-L Yang, 2009. "A note on unrelated parallel machine scheduling with time-dependent processing times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 431-434, March.
    64. L. G. Mitten, 1970. "Branch-and-Bound Methods: General Formulation and Properties," Operations Research, INFORMS, vol. 18(1), pages 24-34, February.
    65. Sun, Linhui & Sun, Linyan & Cui, Kai & Wang, Ji-Bo, 2010. "A note on flow shop scheduling problems with deteriorating jobs on no-idle dominant machines," European Journal of Operational Research, Elsevier, vol. 200(1), pages 309-311, January.
    66. A Kononov & S Gawiejnowicz, 2001. "NP-hard cases in scheduling deteriorating jobs on dedicated machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(6), pages 708-717, June.
    67. Cheng, T.C.E. & Shafransky, Y. & Ng, C.T., 2016. "An alternative approach for proving the NP-hardness of optimization problems," European Journal of Operational Research, Elsevier, vol. 248(1), pages 52-58.
    68. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    69. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    70. Mingbao Cheng & Pandu R Tadikamalla & Jennifer Shang & Bixi Zhang, 2015. "Two-machine flow shop scheduling with deteriorating jobs: minimizing the weighted sum of makespan and total completion time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(5), pages 709-719, May.
    71. Cheng, Yushao & Sun, Shijie, 2009. "Scheduling linear deteriorating jobs with rejection on a single machine," European Journal of Operational Research, Elsevier, vol. 194(1), pages 18-27, April.
    72. Tang, Lixin & Zhao, Xiaoli & Liu, Jiyin & Leung, Joseph Y.-T., 2017. "Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine," European Journal of Operational Research, Elsevier, vol. 263(2), pages 401-411.
    73. Wen-Hung Kuo & Dar-Li Yang, 2011. "Single-machine scheduling with deteriorating jobs," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(1), pages 132-139.
    74. Gawiejnowicz, Stanislaw & Kurc, Wieslaw & Pankowska, Lidia, 2009. "Equivalent time-dependent scheduling problems," European Journal of Operational Research, Elsevier, vol. 196(3), pages 919-929, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyu Sun & Tao Liu & Xin-Na Geng & Yang Hu & Jing-Xiao Xu, 2023. "Optimization of scheduling problems with deterioration effects and an optional maintenance activity," Journal of Scheduling, Springer, vol. 26(3), pages 251-266, June.
    2. Briskorn, Dirk & Gönsch, Jochen & Thiemeyer, Antonia, 2024. "Scheduling maintenance activities subject to stochastic job-dependent machine deterioration," European Journal of Operational Research, Elsevier, vol. 319(1), pages 62-78.
    3. Zheng-Guo Lv & Li-Han Zhang & Xiao-Yuan Wang & Ji-Bo Wang, 2024. "Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization," Mathematics, MDPI, vol. 12(4), pages 1-15, February.
    4. Stanisław Gawiejnowicz & Nir Halman & Hans Kellerer, 2023. "Knapsack problems with position-dependent item weights or profits," Annals of Operations Research, Springer, vol. 326(1), pages 137-156, July.
    5. Aarabi, Fatemeh & Batta, Rajan, 2020. "Scheduling spatially distributed jobs with degradation: Application to pothole repair," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    6. Chen, Ke & Cheng, T.C.E. & Huang, Hailiang & Ji, Min & Yao, Danli, 2023. "Single-machine scheduling with autonomous and induced learning to minimize total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 24-34.
    7. Delorme, Maxence & Iori, Manuel & Mendes, Nilson F.M., 2021. "Solution methods for scheduling problems with sequence-dependent deterioration and maintenance events," European Journal of Operational Research, Elsevier, vol. 295(3), pages 823-837.
    8. Lin, Bertrand M.T. & Liu, Shu-Wei & Mosheiov, Gur, 2024. "Scheduling with a weight-modifying activity to minimize the total weighted completion time," Omega, Elsevier, vol. 128(C).
    9. Helmut A. Sedding, 2020. "Scheduling jobs with a V-shaped time-dependent processing time," Journal of Scheduling, Springer, vol. 23(6), pages 751-768, December.
    10. Stanisław Gawiejnowicz & Wiesław Kurc, 2020. "New results for an open time-dependent scheduling problem," Journal of Scheduling, Springer, vol. 23(6), pages 733-744, December.
    11. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delorme, Maxence & Iori, Manuel & Mendes, Nilson F.M., 2021. "Solution methods for scheduling problems with sequence-dependent deterioration and maintenance events," European Journal of Operational Research, Elsevier, vol. 295(3), pages 823-837.
    2. Li, Shisheng & Ng, C.T. & Cheng, T.C.E. & Yuan, Jinjiang, 2011. "Parallel-batch scheduling of deteriorating jobs with release dates to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 210(3), pages 482-488, May.
    3. Sun, Lin-Hui & Sun, Lin-Yan & Wang, Ming-Zheng & Wang, Ji-Bo, 2012. "Flow shop makespan minimization scheduling with deteriorating jobs under dominating machines," International Journal of Production Economics, Elsevier, vol. 138(1), pages 195-200.
    4. Min Ji & Chou-Jung Hsu & Dar-Li Yang, 2013. "Single-machine scheduling with deteriorating jobs and aging effects under an optional maintenance activity consideration," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 437-447, October.
    5. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    6. Li, Yongqiang & Li, Gang & Sun, Linyan & Xu, Zhiyong, 2009. "Single machine scheduling of deteriorating jobs to minimize total absolute differences in completion times," International Journal of Production Economics, Elsevier, vol. 118(2), pages 424-429, April.
    7. Wenhua Li & Libo Wang & Xing Chai & Hang Yuan, 2020. "Online Batch Scheduling of Simple Linear Deteriorating Jobs with Incompatible Families," Mathematics, MDPI, vol. 8(2), pages 1-12, February.
    8. Helmut A. Sedding, 2020. "Scheduling jobs with a V-shaped time-dependent processing time," Journal of Scheduling, Springer, vol. 23(6), pages 751-768, December.
    9. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    10. Ming Liu & Feifeng Zheng & Chengbin Chu & Jiantong Zhang, 2012. "An FPTAS for uniform machine scheduling to minimize makespan with linear deterioration," Journal of Combinatorial Optimization, Springer, vol. 23(4), pages 483-492, May.
    11. Wang, Ting & Baldacci, Roberto & Lim, Andrew & Hu, Qian, 2018. "A branch-and-price algorithm for scheduling of deteriorating jobs and flexible periodic maintenance on a single machine," European Journal of Operational Research, Elsevier, vol. 271(3), pages 826-838.
    12. Cheng, Yushao & Sun, Shijie, 2009. "Scheduling linear deteriorating jobs with rejection on a single machine," European Journal of Operational Research, Elsevier, vol. 194(1), pages 18-27, April.
    13. C-C He & C-C Wu & W-C Lee, 2009. "Branch-and-bound and weight-combination search algorithms for the total completion time problem with step-deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1759-1766, December.
    14. Wu, Chin-Chia & Lee, Wen-Chiung, 2006. "Two-machine flowshop scheduling to minimize mean flow time under linear deterioration," International Journal of Production Economics, Elsevier, vol. 103(2), pages 572-584, October.
    15. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    16. Hongfeng Wang & Min Huang & Junwei Wang, 2019. "An effective metaheuristic algorithm for flowshop scheduling with deteriorating jobs," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2733-2742, October.
    17. Wang, Ji-Bo, 2007. "Single-machine scheduling problems with the effects of learning and deterioration," Omega, Elsevier, vol. 35(4), pages 397-402, August.
    18. S Gawiejnowicz & W-C Lee & C-L Lin & C-C Wu, 2011. "Single-machine scheduling of proportionally deteriorating jobs by two agents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1983-1991, November.
    19. Cheng, T. C. E. & Ding, Q. & Lin, B. M. T., 2004. "A concise survey of scheduling with time-dependent processing times," European Journal of Operational Research, Elsevier, vol. 152(1), pages 1-13, January.
    20. Tang, Lixin & Zhao, Xiaoli & Liu, Jiyin & Leung, Joseph Y.-T., 2017. "Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine," European Journal of Operational Research, Elsevier, vol. 263(2), pages 401-411.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:23:y:2020:i:1:d:10.1007_s10951-019-00630-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.