IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v118y2009i2p424-429.html
   My bibliography  Save this article

Single machine scheduling of deteriorating jobs to minimize total absolute differences in completion times

Author

Listed:
  • Li, Yongqiang
  • Li, Gang
  • Sun, Linyan
  • Xu, Zhiyong

Abstract

This paper investigates a single machine scheduling problem with deteriorating jobs. By a deteriorating job, we mean that the processing time is an increasing function of its execution starting time. Job deterioration is described by a function which is proportional to a linear function of time. The objective is to find a schedule that minimizes total absolute differences in completion times (TADC). We show that the optimal schedule is V-shaped, i.e., jobs are arranged in descending order of their deterioration rates if they are placed before the job with the smallest deterioration rate, but in ascending order of their deterioration rates if placed after it. We also prove some other properties of an optimal schedule, and propose two heuristic algorithms that are tested against a lower bound. We also provide computational results to evaluate the performance of the heuristic algorithms.

Suggested Citation

  • Li, Yongqiang & Li, Gang & Sun, Linyan & Xu, Zhiyong, 2009. "Single machine scheduling of deteriorating jobs to minimize total absolute differences in completion times," International Journal of Production Economics, Elsevier, vol. 118(2), pages 424-429, April.
  • Handle: RePEc:eee:proeco:v:118:y:2009:i:2:p:424-429
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(08)00389-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T C E Cheng & L Kang & C T Ng, 2004. "Due-date assignment and single machine scheduling with deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 198-203, February.
    2. J-B Wang & Z-Q Xia, 2006. "Flow shop scheduling problems with deteriorating jobs under dominating machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 220-226, February.
    3. Kang, Liying & Ng, C.T., 2007. "A note on a fully polynomial-time approximation scheme for parallel-machine scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 109(1-2), pages 180-184, September.
    4. Wang, Ji-Bo & Xia, Zun-Quan, 2006. "Flow shop scheduling with deteriorating jobs under dominating machines," Omega, Elsevier, vol. 34(4), pages 327-336, August.
    5. Cheng, T. C. E. & Ding, Q. & Lin, B. M. T., 2004. "A concise survey of scheduling with time-dependent processing times," European Journal of Operational Research, Elsevier, vol. 152(1), pages 1-13, January.
    6. Gur Mosheiov, 1991. "V-Shaped Policies for Scheduling Deteriorating Jobs," Operations Research, INFORMS, vol. 39(6), pages 979-991, December.
    7. Sundararaghavan, P. S. & Kunnathur, A. S., 1994. "Single machine scheduling with start time dependent processing times: Some solvable cases," European Journal of Operational Research, Elsevier, vol. 78(3), pages 394-403, November.
    8. Sid Browne & Uri Yechiali, 1990. "Scheduling Deteriorating Jobs on a Single Processor," Operations Research, INFORMS, vol. 38(3), pages 495-498, June.
    9. Bachman, Aleksander & Janiak, Adam, 2000. "Minimizing maximum lateness under linear deterioration," European Journal of Operational Research, Elsevier, vol. 126(3), pages 557-566, November.
    10. John J. Kanet, 1981. "Minimizing Variation of Flow Time in Single Machine Systems," Management Science, INFORMS, vol. 27(12), pages 1453-1459, December.
    11. Wu, Chin-Chia & Lee, Wen-Chiung, 2008. "Single-machine group-scheduling problems with deteriorating setup times and job-processing times," International Journal of Production Economics, Elsevier, vol. 115(1), pages 128-133, September.
    12. A A K Jeng & B M T Lin, 2007. "A note on parallel-machine scheduling with deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(6), pages 824-826, June.
    13. A Kononov & S Gawiejnowicz, 2001. "NP-hard cases in scheduling deteriorating jobs on dedicated machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(6), pages 708-717, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baruch Mor & Gur Mosheiov, 2018. "A note: minimizing total absolute deviation of job completion times on unrelated machines with general position-dependent processing times and job-rejection," Annals of Operations Research, Springer, vol. 271(2), pages 1079-1085, December.
    2. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    3. Zhao, Chuan-Li & Tang, Heng-Yong, 2010. "Scheduling deteriorating jobs under disruption," International Journal of Production Economics, Elsevier, vol. 125(2), pages 294-299, June.
    4. Jin, Xianfei & Li, Kunpeng & Sivakumar, Appa Iyer, 2013. "Scheduling and optimal delivery time quotation for customers with time sensitive demand," International Journal of Production Economics, Elsevier, vol. 145(1), pages 349-358.
    5. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.
    6. S Gawiejnowicz & W-C Lee & C-L Lin & C-C Wu, 2011. "Single-machine scheduling of proportionally deteriorating jobs by two agents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1983-1991, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Yushao & Sun, Shijie, 2009. "Scheduling linear deteriorating jobs with rejection on a single machine," European Journal of Operational Research, Elsevier, vol. 194(1), pages 18-27, April.
    2. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    3. J-B Wang & J-J Wang & P Ji, 2011. "Scheduling jobs with chain precedence constraints and deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1765-1770, September.
    4. C-C He & C-C Wu & W-C Lee, 2009. "Branch-and-bound and weight-combination search algorithms for the total completion time problem with step-deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1759-1766, December.
    5. Dar-Li Yang & Wen-Hung Kuo, 2009. "Single-machine scheduling with both deterioration and learning effects," Annals of Operations Research, Springer, vol. 172(1), pages 315-327, November.
    6. Sun, Lin-Hui & Sun, Lin-Yan & Wang, Ming-Zheng & Wang, Ji-Bo, 2012. "Flow shop makespan minimization scheduling with deteriorating jobs under dominating machines," International Journal of Production Economics, Elsevier, vol. 138(1), pages 195-200.
    7. Ming Liu & Feifeng Zheng & Chengbin Chu & Jiantong Zhang, 2012. "An FPTAS for uniform machine scheduling to minimize makespan with linear deterioration," Journal of Combinatorial Optimization, Springer, vol. 23(4), pages 483-492, May.
    8. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.
    9. Wang, Ji-Bo, 2007. "Single-machine scheduling problems with the effects of learning and deterioration," Omega, Elsevier, vol. 35(4), pages 397-402, August.
    10. Wang, Ji-Bo & Xia, Zun-Quan, 2006. "Flow shop scheduling with deteriorating jobs under dominating machines," Omega, Elsevier, vol. 34(4), pages 327-336, August.
    11. Lee, Wen-Chiung & Shiau, Yau-Ren & Chen, Shiuan-Kang & Wu, Chin-Chia, 2010. "A two-machine flowshop scheduling problem with deteriorating jobs and blocking," International Journal of Production Economics, Elsevier, vol. 124(1), pages 188-197, March.
    12. W-H Kuo & D-L Yang, 2008. "A note on due-date assignment and single-machine scheduling with deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(6), pages 857-859, June.
    13. Wu, Chin-Chia & Lee, Wen-Chiung, 2006. "Two-machine flowshop scheduling to minimize mean flow time under linear deterioration," International Journal of Production Economics, Elsevier, vol. 103(2), pages 572-584, October.
    14. Hongfeng Wang & Min Huang & Junwei Wang, 2019. "An effective metaheuristic algorithm for flowshop scheduling with deteriorating jobs," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2733-2742, October.
    15. Sawik, Tadeusz, 2010. "An integer programming approach to scheduling in a contaminated area," Omega, Elsevier, vol. 38(3-4), pages 179-191, June.
    16. Cheng, T. C. E. & Ding, Q. & Lin, B. M. T., 2004. "A concise survey of scheduling with time-dependent processing times," European Journal of Operational Research, Elsevier, vol. 152(1), pages 1-13, January.
    17. Ma, Ran & Tao, Jiping & Yuan, Jinjiang, 2016. "Online scheduling with linear deteriorating jobs to minimize the total weighted completion time," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 570-583.
    18. Wang, Xiuli & Edwin Cheng, T.C., 2007. "Single-machine scheduling with deteriorating jobs and learning effects to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 178(1), pages 57-70, April.
    19. J-B Wang & Z-Q Xia, 2006. "Flow shop scheduling problems with deteriorating jobs under dominating machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 220-226, February.
    20. Wang, Ting & Baldacci, Roberto & Lim, Andrew & Hu, Qian, 2018. "A branch-and-price algorithm for scheduling of deteriorating jobs and flexible periodic maintenance on a single machine," European Journal of Operational Research, Elsevier, vol. 271(3), pages 826-838.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:118:y:2009:i:2:p:424-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.