IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v57y2015ipbp196-202.html
   My bibliography  Save this article

Structural properties of time-dependent scheduling problems with the lp norm objective

Author

Listed:
  • Gawiejnowicz, Stanisław
  • Kurc, Wiesław

Abstract

We consider general properties which describe the structure of schedules for a single machine scheduling problem with linearly deteriorating jobs and the objective to minimize the lp norm. Applying a matrix formulation of the problem, we show that it has unique solutions and for p≥1 it possesses a kind of convexity. We also express the time complexity of the problem as a function of index p of the lp norm and prove that there exist thresholds p∞ and p1 such that p∞1, while symmetricity of the schedules may hold only for some p≥1.

Suggested Citation

  • Gawiejnowicz, Stanisław & Kurc, Wiesław, 2015. "Structural properties of time-dependent scheduling problems with the lp norm objective," Omega, Elsevier, vol. 57(PB), pages 196-202.
  • Handle: RePEc:eee:jomega:v:57:y:2015:i:pb:p:196-202
    DOI: 10.1016/j.omega.2015.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048315000894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2015.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Single machine scheduling with general positional deterioration and rate-modifying maintenance," Omega, Elsevier, vol. 40(6), pages 791-804.
    2. Ocetkiewicz, Krzysztof M., 2010. "A FPTAS for minimizing total completion time in a single machine time-dependent scheduling problem," European Journal of Operational Research, Elsevier, vol. 203(2), pages 316-320, June.
    3. Gur Mosheiov, 1991. "V-Shaped Policies for Scheduling Deteriorating Jobs," Operations Research, INFORMS, vol. 39(6), pages 979-991, December.
    4. Wang, Ji-Bo, 2007. "Single-machine scheduling problems with the effects of learning and deterioration," Omega, Elsevier, vol. 35(4), pages 397-402, August.
    5. Stanisław Gawiejnowicz & Alexander Kononov, 2014. "Isomorphic scheduling problems," Annals of Operations Research, Springer, vol. 213(1), pages 131-145, February.
    6. Gupta, A.K. & Sivakumar, A.I., 2005. "Multi-objective scheduling of two-job families on a single machine," Omega, Elsevier, vol. 33(5), pages 399-405, October.
    7. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    8. Xin Tang & Ameur Soukhal & Vincent T’kindt, 2014. "Preprocessing for a map sectorization problem by means of mathematical programming," Annals of Operations Research, Springer, vol. 222(1), pages 551-569, November.
    9. Ming Liu & Chengbin Chu & Yinfeng Xu & Jiazhen Huo, 2012. "An optimal online algorithm for single machine scheduling to minimize total general completion time," Journal of Combinatorial Optimization, Springer, vol. 23(2), pages 189-195, February.
    10. Min Ji & Chou-Jung Hsu & Dar-Li Yang, 2013. "Single-machine scheduling with deteriorating jobs and aging effects under an optional maintenance activity consideration," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 437-447, October.
    11. Gawiejnowicz, Stanislaw & Kurc, Wieslaw & Pankowska, Lidia, 2009. "Equivalent time-dependent scheduling problems," European Journal of Operational Research, Elsevier, vol. 196(3), pages 919-929, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    2. Stanisław Gawiejnowicz & Wiesław Kurc, 2020. "New results for an open time-dependent scheduling problem," Journal of Scheduling, Springer, vol. 23(6), pages 733-744, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    2. Xingong Zhang & Guangle Yan & Wanzhen Huang & Guochun Tang, 2011. "Single-machine scheduling problems with time and position dependent processing times," Annals of Operations Research, Springer, vol. 186(1), pages 345-356, June.
    3. Alan J. Soper & Vitaly A. Strusevich, 2020. "Refined conditions for V-shaped optimal sequencing on a single machine to minimize total completion time under combined effects," Journal of Scheduling, Springer, vol. 23(6), pages 665-680, December.
    4. Stanisław Gawiejnowicz & Wiesław Kurc, 2020. "New results for an open time-dependent scheduling problem," Journal of Scheduling, Springer, vol. 23(6), pages 733-744, December.
    5. Yin, Yunqiang & Wang, Yan & Cheng, T.C.E. & Liu, Wenqi & Li, Jinhai, 2017. "Parallel-machine scheduling of deteriorating jobs with potential machine disruptions," Omega, Elsevier, vol. 69(C), pages 17-28.
    6. W-H Kuo & D-L Yang, 2011. "A note on due-date assignment and single-machine scheduling with deteriorating jobs and learning effects," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 206-210, January.
    7. Finke, Gerd & Gara-Ali, Ahmed & Espinouse, Marie-Laure & Jost, Vincent & Moncel, Julien, 2017. "Unified matrix approach to solve production-maintenance problems on a single machine," Omega, Elsevier, vol. 66(PA), pages 140-146.
    8. Anna Arigliano & Gianpaolo Ghiani & Antonio Grieco & Emanuela Guerriero, 2017. "Single-machine time-dependent scheduling problems with fixed rate-modifying activities and resumable jobs," 4OR, Springer, vol. 15(2), pages 201-215, June.
    9. Gara-Ali, Ahmed & Finke, Gerd & Espinouse, Marie-Laure, 2016. "Parallel-machine scheduling with maintenance: Praising the assignment problem," European Journal of Operational Research, Elsevier, vol. 252(1), pages 90-97.
    10. Dar-Li Yang & Wen-Hung Kuo, 2009. "Single-machine scheduling with both deterioration and learning effects," Annals of Operations Research, Springer, vol. 172(1), pages 315-327, November.
    11. Wang, Ting & Baldacci, Roberto & Lim, Andrew & Hu, Qian, 2018. "A branch-and-price algorithm for scheduling of deteriorating jobs and flexible periodic maintenance on a single machine," European Journal of Operational Research, Elsevier, vol. 271(3), pages 826-838.
    12. Atwood, Joseph & Shaik, Saleem, 2020. "Theory and statistical properties of Quantile Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 649-661.
    13. J. Vakili & R. Sadighi Dizaji, 2021. "The closest strong efficient targets in the FDH technology: an enumeration method," Journal of Productivity Analysis, Springer, vol. 55(2), pages 91-105, April.
    14. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.
    15. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    16. Cook, Wade D. & Ruiz, José L. & Sirvent, Inmaculada & Zhu, Joe, 2017. "Within-group common benchmarking using DEA," European Journal of Operational Research, Elsevier, vol. 256(3), pages 901-910.
    17. Grundel, Soesja & Çiftçi, Barış & Borm, Peter & Hamers, Herbert, 2013. "Family sequencing and cooperation," European Journal of Operational Research, Elsevier, vol. 226(3), pages 414-424.
    18. Norelhouda Sekkal & Fayçal Belkaid, 0. "A multi-objective simulated annealing to solve an identical parallel machine scheduling problem with deterioration effect and resources consumption constraints," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-37.
    19. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    20. Wang, John & Yan, Ruiliang & Hollister, Kimberly & Zhu, Dan, 2008. "A historic review of management science research in China," Omega, Elsevier, vol. 36(6), pages 919-932, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:57:y:2015:i:pb:p:196-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.