IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v266y2018i3p795-818.html
   My bibliography  Save this article

Preemptive models of scheduling with controllable processing times and of scheduling with imprecise computation: A review of solution approaches

Author

Listed:
  • Shioura, Akiyoshi
  • Shakhlevich, Natalia V.
  • Strusevich, Vitaly A.

Abstract

This paper provides a review of recent results on scheduling with controllable processing times. The stress is on the methodological aspects that include parametric flow techniques and methods for solving mathematical programming problems with submodular constraints. We show that the use of these methodologies yields fast algorithms for solving problems on single machine or parallel machines, with either one or several objective functions. For a wide range of problems with controllable processing times we report algorithms with the running times which match those known for the corresponding problems with fixed processing times. As a by-product, we present the best possible algorithms for a number of problems on parallel machines that are traditionally studied within the body of research on scheduling with imprecise computation.

Suggested Citation

  • Shioura, Akiyoshi & Shakhlevich, Natalia V. & Strusevich, Vitaly A., 2018. "Preemptive models of scheduling with controllable processing times and of scheduling with imprecise computation: A review of solution approaches," European Journal of Operational Research, Elsevier, vol. 266(3), pages 795-818.
  • Handle: RePEc:eee:ejores:v:266:y:2018:i:3:p:795-818
    DOI: 10.1016/j.ejor.2017.08.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717307658
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.08.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Y. L., 1994. "Scheduling jobs to minimize total cost," European Journal of Operational Research, Elsevier, vol. 74(1), pages 111-119, April.
    2. A. Federgruen & H. Groenevelt, 1986. "Preemptive Scheduling of Uniform Machines by Ordinary Network Flow Techniques," Management Science, INFORMS, vol. 32(3), pages 341-349, March.
    3. Sartaj Sahni, 1979. "Preemptive Scheduling with Due Dates," Operations Research, INFORMS, vol. 27(5), pages 925-934, October.
    4. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2016. "Application of Submodular Optimization to Single Machine Scheduling with Controllable Processing Times Subject to Release Dates and Deadlines," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 148-161, February.
    5. S. Thomas McCormick, 1999. "Fast Algorithms for Parametric Scheduling Come From Extensions to Parametric Maximum Flow," Operations Research, INFORMS, vol. 47(5), pages 744-756, October.
    6. Van Wassenhove, Luk N. & Baker, Kenneth R., 1982. "A bicriterion approach to time/cost trade-offs in sequencing," European Journal of Operational Research, Elsevier, vol. 11(1), pages 48-54, September.
    7. Sterna, Malgorzata, 2011. "A survey of scheduling problems with late work criteria," Omega, Elsevier, vol. 39(2), pages 120-129, April.
    8. Robert McNaughton, 1959. "Scheduling with Deadlines and Loss Functions," Management Science, INFORMS, vol. 6(1), pages 1-12, October.
    9. Satoru Fujishige, 1980. "Lexicographically Optimal Base of a Polymatroid with Respect to a Weight Vector," Mathematics of Operations Research, INFORMS, vol. 5(2), pages 186-196, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).
    2. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
    3. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2020. "Scheduling problems with controllable processing times and a common deadline to minimize maximum compression cost," Journal of Global Optimization, Springer, vol. 76(3), pages 471-490, March.
    4. Chen, Xin & Liang, Yage & Sterna, Małgorzata & Wang, Wen & Błażewicz, Jacek, 2020. "Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date," European Journal of Operational Research, Elsevier, vol. 284(1), pages 67-74.
    5. Zhang, Haowei & Xie, Junwei & Ge, Jiaang & Zhang, Zhaojian & Zong, Binfeng, 2019. "A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar," European Journal of Operational Research, Elsevier, vol. 272(3), pages 868-878.
    6. Shi-Sheng Li & Ren-Xia Chen, 2022. "Minimizing total weighted late work on a single-machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1330-1355, September.
    7. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    8. Lingfa Lu & Liqi Zhang & Jinwen Ou, 2021. "In-house production and outsourcing under different discount schemes on the total outsourcing cost," Annals of Operations Research, Springer, vol. 298(1), pages 361-374, March.
    9. Castro, Pedro M. & Harjunkoski, Iiro & Grossmann, Ignacio E., 2019. "Discrete and continuous-time formulations for dealing with break periods: Preemptive and non-preemptive scheduling," European Journal of Operational Research, Elsevier, vol. 278(2), pages 563-577.
    10. Kramer, Arthur & Dell’Amico, Mauro & Iori, Manuel, 2019. "Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 275(1), pages 67-79.
    11. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2020. "Scheduling problems with controllable processing times and a common deadline to minimize maximum compression cost," Journal of Global Optimization, Springer, vol. 76(3), pages 471-490, March.
    2. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2017. "Machine Speed Scaling by Adapting Methods for Convex Optimization with Submodular Constraints," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 724-736, November.
    3. Sedeno-Noda, A. & Alcaide, D. & Gonzalez-Martin, C., 2006. "Network flow approaches to pre-emptive open-shop scheduling problems with time-windows," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1501-1518, November.
    4. Sedeño-Noda, A. & de Pablo, D. Alcaide López & González-Martín, C., 2009. "A network flow-based method to solve performance cost and makespan open-shop scheduling problems with time-windows," European Journal of Operational Research, Elsevier, vol. 196(1), pages 140-154, July.
    5. Mohri, Shintaro & Masuda, Teruo & Ishii, Hiroaki, 1999. "Bi-criteria scheduling problem on three identical parallel machines," International Journal of Production Economics, Elsevier, vol. 60(1), pages 529-536, April.
    6. Lenstra, J. K. & Rinnooy Kan, A. H. G., 1980. "An Introduction To Multiprocessor Scheduling," Econometric Institute Archives 272258, Erasmus University Rotterdam.
    7. Wan, Guohua & Vakati, Sudheer R. & Leung, Joseph Y.-T. & Pinedo, Michael, 2010. "Scheduling two agents with controllable processing times," European Journal of Operational Research, Elsevier, vol. 205(3), pages 528-539, September.
    8. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2016. "Application of Submodular Optimization to Single Machine Scheduling with Controllable Processing Times Subject to Release Dates and Deadlines," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 148-161, February.
    9. Fröhlich von Elmbach, Alexander & Scholl, Armin & Walter, Rico, 2019. "Minimizing the maximal ergonomic burden in intra-hospital patient transportation," European Journal of Operational Research, Elsevier, vol. 276(3), pages 840-854.
    10. Cheng, T. C. Edwin & Shakhlevich, Natalia V., 2005. "Minimizing non-decreasing separable objective functions for the unit-time open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 165(2), pages 444-456, September.
    11. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    12. Rubing Chen & Jinjiang Yuan & C.T. Ng & T.C.E. Cheng, 2019. "Single‐machine scheduling with deadlines to minimize the total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 582-595, October.
    13. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    14. Shabtay, Dvir & Kaspi, Moshe, 2006. "Parallel machine scheduling with a convex resource consumption function," European Journal of Operational Research, Elsevier, vol. 173(1), pages 92-107, August.
    15. S. Thomas McCormick, 1999. "Fast Algorithms for Parametric Scheduling Come From Extensions to Parametric Maximum Flow," Operations Research, INFORMS, vol. 47(5), pages 744-756, October.
    16. Su, Ling-Huey & Lien, Chun-Yuan, 2009. "Scheduling parallel machines with resource-dependent processing times," International Journal of Production Economics, Elsevier, vol. 117(2), pages 256-266, February.
    17. S. Knust & N. V. Shakhlevich & S. Waldherr & C. Weiß, 2019. "Shop scheduling problems with pliable jobs," Journal of Scheduling, Springer, vol. 22(6), pages 635-661, December.
    18. Liu Guiqing & Li Kai & Cheng Bayi, 2015. "Preemptive Scheduling with Controllable Processing Times on Parallel Machines," Journal of Systems Science and Information, De Gruyter, vol. 3(1), pages 68-76, February.
    19. Lingfa Lu & Liqi Zhang, 2023. "Scheduling problems with rejection to minimize the k-th power of the makespan plus the total rejection cost," Journal of Combinatorial Optimization, Springer, vol. 46(1), pages 1-17, August.
    20. Hoogeveen, J. A. & Lenstra, J. K. & Veltman, B., 1996. "Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard," European Journal of Operational Research, Elsevier, vol. 89(1), pages 172-175, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:266:y:2018:i:3:p:795-818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.