IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v26y2023i3d10.1007_s10951-022-00756-4.html
   My bibliography  Save this article

Optimization of scheduling problems with deterioration effects and an optional maintenance activity

Author

Listed:
  • Xinyu Sun

    (Xi’an Jiaotong University)

  • Tao Liu

    (Xi’an Jiaotong University)

  • Xin-Na Geng

    (Xi’an Jiaotong University
    Shenyang Aerospace University)

  • Yang Hu

    (Shenyang Aerospace University)

  • Jing-Xiao Xu

    (Shenyang Aerospace University)

Abstract

In this investigation, the single-machine scheduling problem with deterioration effects and an optional maintenance activity is explored. Deterioration effect means that the actual processing time of the job is a function of its normal processing time and its starting time. As an optional maintenance activity, the machine will perform a maintenance activity. After the maintenance activity is completed, the machine will return to the initial state, and the job deterioration will start again. The goal is to determine an optimal sequence and the location of the maintenance activity that minimizes some objective functions. We prove that the problem of minimizing the makespan, total completion time, and total absolute differences in completion (waiting) times can be solved in polynomial time $$O(n^4)$$ O ( n 4 ) , where n is the number of jobs. For the total weighted completion time minimization, if the weights are positional-dependent weights, we prove that the problem can be solved in polynomial time; if the weights are job-dependent weights, this problem is NP-hard. To solve the problem with job-dependent weights, we present the heuristic, tabu search, and branch-and-bound algorithms.

Suggested Citation

  • Xinyu Sun & Tao Liu & Xin-Na Geng & Yang Hu & Jing-Xiao Xu, 2023. "Optimization of scheduling problems with deterioration effects and an optional maintenance activity," Journal of Scheduling, Springer, vol. 26(3), pages 251-266, June.
  • Handle: RePEc:spr:jsched:v:26:y:2023:i:3:d:10.1007_s10951-022-00756-4
    DOI: 10.1007/s10951-022-00756-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-022-00756-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-022-00756-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Pei & Jinling Wei & Baoyu Liao & Xinbao Liu & Panos M. Pardalos, 2020. "Two-agent scheduling on bounded parallel-batching machines with an aging effect of job-position-dependent," Annals of Operations Research, Springer, vol. 294(1), pages 191-223, November.
    2. Lee, Chung-Yee & Lin, Chen-Sin, 2001. "Single-machine scheduling with maintenance and repair rate-modifying activities," European Journal of Operational Research, Elsevier, vol. 135(3), pages 493-513, December.
    3. Xiaoyun Xiong & Dujuan Wang & T.C. Edwin Cheng & Chin-Chia Wu & Yunqiang Yin, 2018. "Single-machine scheduling and common due date assignment with potential machine disruption," International Journal of Production Research, Taylor & Francis Journals, vol. 56(3), pages 1345-1360, February.
    4. Lili Zuo & Zhenxia Sun & Lingfa Lu & Liqi Zhang, 2019. "Single-Machine Scheduling with Rejection and an Operator Non-Availability Interval," Mathematics, MDPI, vol. 7(8), pages 1-8, July.
    5. Zhanguo Zhu & Jinlin Li & Chengbin Chu, 2017. "Multitasking Scheduling Problems with Deterioration Effect," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-10, April.
    6. Zhenyou Wang & Cai-Min Wei & Yu-Bin Wu, 2016. "Single Machine Two-Agent Scheduling with Deteriorating Jobs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-17, October.
    7. Vitaly A. Strusevich & Kabir Rustogi, 2017. "Scheduling with Time-Changing Effects and Rate-Modifying Activities," International Series in Operations Research and Management Science, Springer, number 978-3-319-39574-6, January.
    8. Xinyu Sun & Xin-Na Geng, 2019. "Single-machine scheduling with deteriorating effects and machine maintenance," International Journal of Production Research, Taylor & Francis Journals, vol. 57(10), pages 3186-3199, May.
    9. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    10. Rubing Chen & Jinjiang Yuan & C.T. Ng & T.C.E. Cheng, 2019. "Single‐machine scheduling with deadlines to minimize the total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 582-595, October.
    11. Cheng, T. C. E. & Ding, Q. & Lin, B. M. T., 2004. "A concise survey of scheduling with time-dependent processing times," European Journal of Operational Research, Elsevier, vol. 152(1), pages 1-13, January.
    12. Lee, C. -Y. & Leon, V. J., 2001. "Machine scheduling with a rate-modifying activity," European Journal of Operational Research, Elsevier, vol. 128(1), pages 119-128, January.
    13. Lodree Jr., Emmett J. & Geiger, Christopher D., 2010. "A note on the optimal sequence position for a rate-modifying activity under simple linear deterioration," European Journal of Operational Research, Elsevier, vol. 201(2), pages 644-648, March.
    14. John J. Kanet, 1981. "Minimizing Variation of Flow Time in Single Machine Systems," Management Science, INFORMS, vol. 27(12), pages 1453-1459, December.
    15. Min Ji & Chou-Jung Hsu & Dar-Li Yang, 2013. "Single-machine scheduling with deteriorating jobs and aging effects under an optional maintenance activity consideration," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 437-447, October.
    16. Zhanguo Zhu & Feifeng Zheng & Chengbin Chu, 2017. "Multitasking scheduling problems with a rate-modifying activity," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 296-312, January.
    17. Xue Huang & Na Yin & Wei-Wei Liu & Ji-Bo Wang, 2020. "Common Due Window Assignment Scheduling with Proportional Linear Deterioration Effects," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(01), pages 1-15, January.
    18. Xingong Zhang & Wen-Hsiang Wu & Win-Chin Lin & Chin-Chia Wu, 2018. "Machine scheduling problems under deteriorating effects and deteriorating rate-modifying activities," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(3), pages 439-448, March.
    19. Uttarayan Bagchi, 1989. "Simultaneous Minimization of Mean and Variation of Flow Time and Waiting Time in Single Machine Systems," Operations Research, INFORMS, vol. 37(1), pages 118-125, February.
    20. Sheng Yu, 2015. "An optimal single-machine scheduling with linear deterioration rate and rate-modifying activities," Journal of Combinatorial Optimization, Springer, vol. 30(2), pages 242-252, August.
    21. Kabir Rustogi & Vitaly A Strusevich, 2015. "Single machine scheduling with time-dependent linear deterioration and rate-modifying maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(3), pages 500-515, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng-Guo Lv & Li-Han Zhang & Xiao-Yuan Wang & Ji-Bo Wang, 2024. "Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization," Mathematics, MDPI, vol. 12(4), pages 1-15, February.
    2. Ming-Hui Li & Dan-Yang Lv & Yuan-Yuan Lu & Ji-Bo Wang, 2024. "Scheduling with Group Technology, Resource Allocation, and Learning Effect Simultaneously," Mathematics, MDPI, vol. 12(7), pages 1-21, March.
    3. Zhang, Wenyu & Gan, Jie & He, Shuguang & Li, Ting & He, Zhen, 2024. "An integrated framework of preventive maintenance and task scheduling for repairable multi-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    4. Yurong Zhang & Xi Wang & Li-Han Zhang & Xue Jia & Ji-Bo Wang, 2024. "Different due-window assignment scheduling with deterioration effects," Journal of Combinatorial Optimization, Springer, vol. 48(5), pages 1-21, December.
    5. Li-Han Zhang & Dan-Yang Lv & Ji-Bo Wang, 2023. "Two-Agent Slack Due-Date Assignment Scheduling with Resource Allocations and Deteriorating Jobs," Mathematics, MDPI, vol. 11(12), pages 1-12, June.
    6. Hongyu He & Yanzhi Zhao & Xiaojun Ma & Yuan-Yuan Lu & Na Ren & Ji-Bo Wang, 2023. "Study on Scheduling Problems with Learning Effects and Past Sequence Delivery Times," Mathematics, MDPI, vol. 11(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ting & Baldacci, Roberto & Lim, Andrew & Hu, Qian, 2018. "A branch-and-price algorithm for scheduling of deteriorating jobs and flexible periodic maintenance on a single machine," European Journal of Operational Research, Elsevier, vol. 271(3), pages 826-838.
    2. Kim, Hyunjoon & Kim, Byung-In, 2022. "Optimal sequence for single server scheduling incorporating a rate-modifying activity under job-dependent linear deterioration," European Journal of Operational Research, Elsevier, vol. 298(2), pages 439-450.
    3. Briskorn, Dirk & Gönsch, Jochen & Thiemeyer, Antonia, 2024. "Scheduling maintenance activities subject to stochastic job-dependent machine deterioration," European Journal of Operational Research, Elsevier, vol. 319(1), pages 62-78.
    4. Sheng Yu, 2015. "An optimal single-machine scheduling with linear deterioration rate and rate-modifying activities," Journal of Combinatorial Optimization, Springer, vol. 30(2), pages 242-252, August.
    5. Gur Mosheiov & Daniel Oron, 2020. "Scheduling problems with a weight-modifying-activity," Annals of Operations Research, Springer, vol. 295(2), pages 737-745, December.
    6. Lin, Bertrand M.T. & Liu, Shu-Wei & Mosheiov, Gur, 2024. "Scheduling with a weight-modifying activity to minimize the total weighted completion time," Omega, Elsevier, vol. 128(C).
    7. Hui Zhu & Min Li & Zhangjin Zhou & Yun You, 2016. "Due-window assignment and scheduling with general position-dependent processing times involving a deteriorating and compressible maintenance activity," International Journal of Production Research, Taylor & Francis Journals, vol. 54(12), pages 3475-3490, June.
    8. Delorme, Maxence & Iori, Manuel & Mendes, Nilson F.M., 2021. "Solution methods for scheduling problems with sequence-dependent deterioration and maintenance events," European Journal of Operational Research, Elsevier, vol. 295(3), pages 823-837.
    9. Xu, Shuling & Hall, Nicholas G., 2021. "Fatigue, personnel scheduling and operations: Review and research opportunities," European Journal of Operational Research, Elsevier, vol. 295(3), pages 807-822.
    10. J-J Wang & J-B Wang & F Liu, 2011. "Parallel machines scheduling with a deteriorating maintenance activity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1898-1902, October.
    11. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    12. Lodree Jr., Emmett J. & Geiger, Christopher D., 2010. "A note on the optimal sequence position for a rate-modifying activity under simple linear deterioration," European Journal of Operational Research, Elsevier, vol. 201(2), pages 644-648, March.
    13. Yurong Zhang & Xi Wang & Li-Han Zhang & Xue Jia & Ji-Bo Wang, 2024. "Different due-window assignment scheduling with deterioration effects," Journal of Combinatorial Optimization, Springer, vol. 48(5), pages 1-21, December.
    14. Stanisław Gawiejnowicz & Wiesław Kurc, 2020. "New results for an open time-dependent scheduling problem," Journal of Scheduling, Springer, vol. 23(6), pages 733-744, December.
    15. Janiak, Adam & Janiak, Władysław A. & Krysiak, Tomasz & Kwiatkowski, Tomasz, 2015. "A survey on scheduling problems with due windows," European Journal of Operational Research, Elsevier, vol. 242(2), pages 347-357.
    16. G Mosheiov & J B Sidney, 2010. "Scheduling a deteriorating maintenance activity on a single machine," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 882-887, May.
    17. Shi-Sheng Li & Ren-Xia Chen, 2017. "Scheduling with Rejection and a Deteriorating Maintenance Activity on a Single Machine," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(02), pages 1-17, April.
    18. Zhanguo Zhu & Feifeng Zheng & Chengbin Chu, 2017. "Multitasking scheduling problems with a rate-modifying activity," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 296-312, January.
    19. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    20. Yi-Chun Wang & Ji-Bo Wang, 2023. "Study on Convex Resource Allocation Scheduling with a Time-Dependent Learning Effect," Mathematics, MDPI, vol. 11(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:26:y:2023:i:3:d:10.1007_s10951-022-00756-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.