IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i4p610-d1341180.html
   My bibliography  Save this article

Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization

Author

Listed:
  • Zheng-Guo Lv

    (School of Computer, Shenyang Aerospace University, Shenyang 110136, China)

  • Li-Han Zhang

    (School of Computer, Shenyang Aerospace University, Shenyang 110136, China)

  • Xiao-Yuan Wang

    (School of Computer, Shenyang Aerospace University, Shenyang 110136, China)

  • Ji-Bo Wang

    (School of Computer, Shenyang Aerospace University, Shenyang 110136, China)

Abstract

In this paper, we investigate a single machine scheduling problem with a proportional job deterioration. Under release times (dates) of jobs, the objective is to minimize the total weighted completion time. For the general condition, some dominance properties, a lower bound and an upper bound are given, then a branch-and-bound algorithm is proposed. In addition, some meta-heuristic algorithms (including the tabu search ( T S ), simulated annealing ( S A ) and heuristic ( N E H ) algorithms) are proposed. Finally, experimental results are provided to compare the branch-and-bound algorithm and another three algorithms, which indicate that the branch-and-bound algorithm can solve instances of 40 jobs within a reasonable time and that the N E H and S A are more accurate than the T S .

Suggested Citation

  • Zheng-Guo Lv & Li-Han Zhang & Xiao-Yuan Wang & Ji-Bo Wang, 2024. "Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization," Mathematics, MDPI, vol. 12(4), pages 1-15, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:610-:d:1341180
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/4/610/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/4/610/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin Qian & Yu Zhan, 2022. "The Due Window Assignment Problems with Deteriorating Job and Delivery Time," Mathematics, MDPI, vol. 10(10), pages 1-16, May.
    2. Qian, Jin & Lin, Hexiang & Kong, Yufeng & Wang, Yuansong, 2020. "Tri-criteria single machine scheduling model with release times and learning factor," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    3. Xinyu Sun & Tao Liu & Xin-Na Geng & Yang Hu & Jing-Xiao Xu, 2023. "Optimization of scheduling problems with deterioration effects and an optional maintenance activity," Journal of Scheduling, Springer, vol. 26(3), pages 251-266, June.
    4. Xinyu Sun & Xin-Na Geng, 2019. "Single-machine scheduling with deteriorating effects and machine maintenance," International Journal of Production Research, Taylor & Francis Journals, vol. 57(10), pages 3186-3199, May.
    5. Gawiejnowicz, Stanislaw, 2007. "Scheduling deteriorating jobs subject to job or machine availability constraints," European Journal of Operational Research, Elsevier, vol. 180(1), pages 472-478, July.
    6. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    7. Shangchia Liu & Wen-Hsiang Wu & Chao-Chung Kang & Win-Chin Lin & Zhenmin Cheng, 2015. "A Single-Machine Two-Agent Scheduling Problem by a Branch-and-Bound and Three Simulated Annealing Algorithms," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-8, April.
    8. F. P. Kelly, 1982. "A Remark on Search and Sequencing Problems," Mathematics of Operations Research, INFORMS, vol. 7(1), pages 154-157, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yurong Zhang & Xi Wang & Li-Han Zhang & Xue Jia & Ji-Bo Wang, 2024. "Different due-window assignment scheduling with deterioration effects," Journal of Combinatorial Optimization, Springer, vol. 48(5), pages 1-21, December.
    2. Rong-Rong Mao & Yi-Chun Wang & Dan-Yang Lv & Ji-Bo Wang & Yuan-Yuan Lu, 2023. "Delivery Times Scheduling with Deterioration Effects in Due Window Assignment Environments," Mathematics, MDPI, vol. 11(18), pages 1-18, September.
    3. Xinyu Sun & Tao Liu & Xin-Na Geng & Yang Hu & Jing-Xiao Xu, 2023. "Optimization of scheduling problems with deterioration effects and an optional maintenance activity," Journal of Scheduling, Springer, vol. 26(3), pages 251-266, June.
    4. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    5. Li-Han Zhang & Dan-Yang Lv & Ji-Bo Wang, 2023. "Two-Agent Slack Due-Date Assignment Scheduling with Resource Allocations and Deteriorating Jobs," Mathematics, MDPI, vol. 11(12), pages 1-12, June.
    6. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    7. Hongyu He & Yanzhi Zhao & Xiaojun Ma & Yuan-Yuan Lu & Na Ren & Ji-Bo Wang, 2023. "Study on Scheduling Problems with Learning Effects and Past Sequence Delivery Times," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    8. Stanisław Gawiejnowicz & Wiesław Kurc, 2020. "New results for an open time-dependent scheduling problem," Journal of Scheduling, Springer, vol. 23(6), pages 733-744, December.
    9. Gawiejnowicz, Stanislaw & Kononov, Alexander, 2010. "Complexity and approximability of scheduling resumable proportionally deteriorating jobs," European Journal of Operational Research, Elsevier, vol. 200(1), pages 305-308, January.
    10. Mehrez, Abraham & Rabinowitz, Gad, 1995. "A note on the rule for sequential selection," European Journal of Operational Research, Elsevier, vol. 81(1), pages 166-175, February.
    11. Ming-Hui Li & Dan-Yang Lv & Yuan-Yuan Lu & Ji-Bo Wang, 2024. "Scheduling with Group Technology, Resource Allocation, and Learning Effect Simultaneously," Mathematics, MDPI, vol. 12(7), pages 1-21, March.
    12. Wenhua Li & Libo Wang & Xing Chai & Hang Yuan, 2020. "Online Batch Scheduling of Simple Linear Deteriorating Jobs with Incompatible Families," Mathematics, MDPI, vol. 8(2), pages 1-12, February.
    13. Yang, Suh-Jenq & Yang, Dar-Li, 2010. "Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance activities," Omega, Elsevier, vol. 38(6), pages 528-533, December.
    14. Jin Qian & Yu Zhan, 2022. "The Due Window Assignment Problems with Deteriorating Job and Delivery Time," Mathematics, MDPI, vol. 10(10), pages 1-16, May.
    15. Delorme, Maxence & Iori, Manuel & Mendes, Nilson F.M., 2021. "Solution methods for scheduling problems with sequence-dependent deterioration and maintenance events," European Journal of Operational Research, Elsevier, vol. 295(3), pages 823-837.
    16. Xu, Shuling & Hall, Nicholas G., 2021. "Fatigue, personnel scheduling and operations: Review and research opportunities," European Journal of Operational Research, Elsevier, vol. 295(3), pages 807-822.
    17. Helmut A. Sedding, 2020. "Scheduling jobs with a V-shaped time-dependent processing time," Journal of Scheduling, Springer, vol. 23(6), pages 751-768, December.
    18. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    19. Jin Qian & Yu Zhan, 2021. "The Due Date Assignment Scheduling Problem with Delivery Times and Truncated Sum-of-Processing-Times-Based Learning Effect," Mathematics, MDPI, vol. 9(23), pages 1-14, November.
    20. Ng, C.T. & Barketau, M.S. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2010. ""Product Partition" and related problems of scheduling and systems reliability: Computational complexity and approximation," European Journal of Operational Research, Elsevier, vol. 207(2), pages 601-604, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:610-:d:1341180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.