IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v235y2014i1p1-16.html
   My bibliography  Save this article

A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems

Author

Listed:
  • Perez-Gonzalez, Paz
  • Framinan, Jose M.

Abstract

Most classical scheduling research assumes that the objectives sought are common to all jobs to be scheduled. However, many real-life applications can be modeled by considering different sets of jobs, each one with its own objective(s), and an increasing number of papers addressing these problems has appeared over the last few years. Since so far the area lacks a unified view, the studied problems have received different names (such as interfering jobs, multi-agent scheduling, and mixed-criteria), some authors do not seem to be aware of important contributions in related problems, and solution procedures are often developed without taking into account existing ones. Therefore, the topic is in need of a common framework that allows for a systematic recollection of existing contributions, as well as a clear definition of the main research avenues. In this paper we review multicriteria scheduling problems involving two or more sets of jobs and propose an unified framework providing a common definition, name and notation for these problems. Moreover, we systematically review and classify the existing contributions in terms of the complexity of the problems and the proposed solution procedures, discuss the main advances, and point out future research lines in the topic.

Suggested Citation

  • Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
  • Handle: RePEc:eee:ejores:v:235:y:2014:i:1:p:1-16
    DOI: 10.1016/j.ejor.2013.09.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713007728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.09.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Jinjiang & Mu, Yundong, 2007. "Rescheduling with release dates to minimize makespan under a limit on the maximum sequence disruption," European Journal of Operational Research, Elsevier, vol. 182(2), pages 936-944, October.
    2. Alessandro Agnetis & Dario Pacciarelli & Andrea Pacifici, 2007. "Multi-agent single machine scheduling," Annals of Operations Research, Springer, vol. 150(1), pages 3-15, March.
    3. Wenchang Luo & Lin Chen & Guochuan Zhang, 2012. "Approximation schemes for two-machine flow shop scheduling with two agents," Journal of Combinatorial Optimization, Springer, vol. 24(3), pages 229-239, October.
    4. Nong, Q.Q. & Cheng, T.C.E. & Ng, C.T., 2011. "Two-agent scheduling to minimize the total cost," European Journal of Operational Research, Elsevier, vol. 215(1), pages 39-44, November.
    5. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    6. Jinjiang Yuan & Yundong Mu & Lingfa Lu & Wenhua Li, 2007. "Rescheduling With Release Dates To Minimize Total Sequence Disruption Under A Limit On The Makespan," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(06), pages 789-796.
    7. Ali Tamer Unal & Reha Uzsoy & Ali Kiran, 1997. "Rescheduling on a single machine with part-type dependent setup times and deadlines," Annals of Operations Research, Springer, vol. 70(0), pages 93-113, April.
    8. Balasubramanian, Hari & Fowler, John & Keha, Ahmet & Pfund, Michele, 2009. "Scheduling interfering job sets on parallel machines," European Journal of Operational Research, Elsevier, vol. 199(1), pages 55-67, November.
    9. Mor, Baruch & Mosheiov, Gur, 2011. "Single machine batch scheduling with two competing agents to minimize total flowtime," European Journal of Operational Research, Elsevier, vol. 215(3), pages 524-531, December.
    10. Cheng, T.C.E. & Ng, C.T. & Yuan, J.J., 2008. "Multi-agent scheduling on a single machine with max-form criteria," European Journal of Operational Research, Elsevier, vol. 188(2), pages 603-609, July.
    11. Nicholas G. Hall & Chris N. Potts, 2004. "Rescheduling for New Orders," Operations Research, INFORMS, vol. 52(3), pages 440-453, June.
    12. Alessandro Agnetis & Gianluca De Pascale & Marco Pranzo, 2009. "Computing the Nash solution for scheduling bargaining problems," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 6(1), pages 54-69.
    13. Mor, Baruch & Mosheiov, Gur, 2010. "Scheduling problems with two competing agents to minimize minmax and minsum earliness measures," European Journal of Operational Research, Elsevier, vol. 206(3), pages 540-546, November.
    14. Joseph Y.-T. Leung & Michael Pinedo & Guohua Wan, 2010. "Competitive Two-Agent Scheduling and Its Applications," Operations Research, INFORMS, vol. 58(2), pages 458-469, April.
    15. S Gawiejnowicz & W-C Lee & C-L Lin & C-C Wu, 2011. "Single-machine scheduling of proportionally deteriorating jobs by two agents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1983-1991, November.
    16. Guosheng Ding & Shijie Sun, 2011. "Single Machine Family Scheduling With Two Competing Agents To Minimize Makespan," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 28(06), pages 773-785.
    17. Arthur Warburton, 1987. "Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems," Operations Research, INFORMS, vol. 35(1), pages 70-79, February.
    18. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    19. Wan, Guohua & Vakati, Sudheer R. & Leung, Joseph Y.-T. & Pinedo, Michael, 2010. "Scheduling two agents with controllable processing times," European Journal of Operational Research, Elsevier, vol. 205(3), pages 528-539, September.
    20. Jeffrey W. Herrmann, 2006. "Rescheduling Strategies, Policies, and Methods," International Series in Operations Research & Management Science, in: Jeffrey W. Herrmann (ed.), Handbook of Production Scheduling, chapter 0, pages 135-148, Springer.
    21. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    22. A. Agnetis & P.B. Mirchandani & D. Pacciarelli & A. Pacifici, 2000. "Nondominated Schedules for a Job-Shop with Two Competing Users," Computational and Mathematical Organization Theory, Springer, vol. 6(2), pages 191-217, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byung-Gyoo Kim & Byung-Cheon Choi & Myoung-Ju Park, 2017. "Two-Machine and Two-Agent Flow Shop with Special Processing Times Structures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-17, August.
    2. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
    3. Shesh Narayan Sahu & Yuvraj Gajpal & Swapan Debbarma, 2018. "Two-agent-based single-machine scheduling with switchover time to minimize total weighted completion time and makespan objectives," Annals of Operations Research, Springer, vol. 269(1), pages 623-640, October.
    4. Cheng, Shuenn-Ren, 2014. "Some new problems on two-agent scheduling to minimize the earliness costs," International Journal of Production Economics, Elsevier, vol. 156(C), pages 24-30.
    5. Shi-Sheng Li & Ren-Xia Chen & Qi Feng, 2016. "Scheduling two job families on a single machine with two competitive agents," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 784-799, October.
    6. Baruch Mor & Gur Mosheiov, 2017. "A two-agent single machine scheduling problem with due-window assignment and a common flow-allowance," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1454-1468, May.
    7. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.
    8. Zhang, Xingong, 2021. "Two competitive agents to minimize the weighted total late work and the total completion time," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    9. Paz Perez-Gonzalez & Jose M. Framinan, 2018. "Single machine interfering jobs problem with flowtime objective," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 953-972, June.
    10. Byung-Cheon Choi & Myoung-Ju Park, 2016. "An Ordered Flow Shop with Two Agents," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-24, October.
    11. Jun Pei & Jinling Wei & Baoyu Liao & Xinbao Liu & Panos M. Pardalos, 2020. "Two-agent scheduling on bounded parallel-batching machines with an aging effect of job-position-dependent," Annals of Operations Research, Springer, vol. 294(1), pages 191-223, November.
    12. Lang, Fabian & Fink, Andreas & Brandt, Tobias, 2016. "Design of automated negotiation mechanisms for decentralized heterogeneous machine scheduling," European Journal of Operational Research, Elsevier, vol. 248(1), pages 192-203.
    13. Xiaoling Cao & Wen-Hsing Wu & Wen-Hung Wu & Chin-Chia Wu, 2018. "Some two-agent single-machine scheduling problems to minimize minmax and minsum of completion times," Operational Research, Springer, vol. 18(2), pages 293-314, July.
    14. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    15. Yaodong Ni & Zhaojun Zhao, 2017. "Two-agent scheduling problem under fuzzy environment," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 739-748, March.
    16. Cheng He & Joseph Y.-T. Leung, 2017. "Two-agent scheduling of time-dependent jobs," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 362-377, August.
    17. Ren-Xia Chen & Shi-Sheng Li, 2019. "Two-agent single-machine scheduling with cumulative deterioration," 4OR, Springer, vol. 17(2), pages 201-219, June.
    18. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    19. Shang-Chia Liu & Jiahui Duan & Win-Chin Lin & Wen-Hsiang Wu & Jan-Yee Kung & Hau Chen & Chin-Chia Wu, 2018. "A Branch-and-Bound Algorithm for Two-Agent Scheduling with Learning Effect and Late Work Criterion," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-24, October.
    20. Zhang Xingong & Wang Yong, 2017. "Two-agent scheduling problems on a single-machine to minimize the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 945-955, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:235:y:2014:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.