Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-012-0109-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- DEVOLDER, Olivier, 2011. "Stochastic first order methods in smooth convex optimization," LIDAM Discussion Papers CORE 2011070, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2011.
"First-order methods of smooth convex optimization with inexact oracle,"
LIDAM Discussion Papers CORE
2011002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2014. "First-order methods of smooth convex optimization with inexact oracle," LIDAM Reprints CORE 2594, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- E. Y. Pee & J. O. Royset, 2011. "On Solving Large-Scale Finite Minimax Problems Using Exponential Smoothing," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 390-421, February.
- Jin Jung & Dianne O’Leary & André Tits, 2012. "Adaptive constraint reduction for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 51(1), pages 125-157, January.
- Chun-Hung Chen & Donghai He & Michael Fu & Loo Hay Lee, 2008. "Efficient Simulation Budget Allocation for Selecting an Optimal Subset," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 579-595, November.
- Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
- Raghu Pasupathy, 2010. "On Choosing Parameters in Retrospective-Approximation Algorithms for Stochastic Root Finding and Simulation Optimization," Operations Research, INFORMS, vol. 58(4-part-1), pages 889-901, August.
- E. Polak & R. S. Womersley & H. X. Yin, 2008. "An Algorithm Based on Active Sets and Smoothing for Discretized Semi-Infinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 311-328, August.
- E. Polak & J. O. Royset & R. S. Womersley, 2003. "Algorithms with Adaptive Smoothing for Finite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(3), pages 459-484, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Johannes O. Royset & Roger J-B Wets, 2016. "Optimality Functions and Lopsided Convergence," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 965-983, June.
- Junxiang Li & Mingsong Cheng & Bo Yu & Shuting Zhang, 2015. "Group Update Method for Sparse Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 257-277, July.
- Jin-bao Jian & Qing-juan Hu & Chun-ming Tang, 2014. "Superlinearly Convergent Norm-Relaxed SQP Method Based on Active Set Identification and New Line Search for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 859-883, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Johannes Royset, 2013. "On sample size control in sample average approximations for solving smooth stochastic programs," Computational Optimization and Applications, Springer, vol. 55(2), pages 265-309, June.
- Junxiang Li & Mingsong Cheng & Bo Yu & Shuting Zhang, 2015. "Group Update Method for Sparse Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 257-277, July.
- E. Y. Pee & J. O. Royset, 2011. "On Solving Large-Scale Finite Minimax Problems Using Exponential Smoothing," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 390-421, February.
- Stefan Richter & Colin Jones & Manfred Morari, 2013. "Certification aspects of the fast gradient method for solving the dual of parametric convex programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 305-321, June.
- Zhengyong Zhou & Xiaoyang Dai, 2023. "An active set strategy to address the ill-conditioning of smoothing methods for solving finite linear minimax problems," Journal of Global Optimization, Springer, vol. 85(2), pages 421-439, February.
- Ryan Alimo & Pooriya Beyhaghi & Thomas R. Bewley, 2020. "Delaunay-based derivative-free optimization via global surrogates. Part III: nonconvex constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 743-776, August.
- Renato D. C. Monteiro & Camilo Ortiz & Benar F. Svaiter, 2016. "An adaptive accelerated first-order method for convex optimization," Computational Optimization and Applications, Springer, vol. 64(1), pages 31-73, May.
- Helene Krieg & Tobias Seidel & Jan Schwientek & Karl-Heinz Küfer, 2022. "Solving continuous set covering problems by means of semi-infinite optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 39-82, August.
- Yi Chen & David Gao, 2016. "Global solutions to nonconvex optimization of 4th-order polynomial and log-sum-exp functions," Journal of Global Optimization, Springer, vol. 64(3), pages 417-431, March.
- Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
- Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
- B. Rustem & S. Žaković & P. Parpas, 2008. "Convergence of an Interior Point Algorithm for Continuous Minimax," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 87-103, January.
- Souvik Das & Ashwin Aravind & Ashish Cherukuri & Debasish Chatterjee, 2022. "Near-optimal solutions of convex semi-infinite programs via targeted sampling," Annals of Operations Research, Springer, vol. 318(1), pages 129-146, November.
- Aguiar, Victor H. & Kashaev, Nail & Allen, Roy, 2023.
"Prices, profits, proxies, and production,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 666-693.
- Victor H. Aguiar & Nail Kashaev & Roy Allen, 2018. "Prices, Profits, Proxies, and Production," Papers 1810.04697, arXiv.org, revised Jun 2022.
- Victor H. Aguiar & Nail Kashaev & Roy Allen, 2022. "Prices, Profits, Proxies, and Production," University of Western Ontario, Departmental Research Report Series 20226, University of Western Ontario, Department of Economics.
- Victor H. Aguiar & Roy Allen & Nail Kashaev, 2020. "Prices, Profits, Proxies, and Production," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20202, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
- Mohammad H. Almomani & Mahmoud H. Alrefaei, 2016. "Ordinal Optimization with Computing Budget Allocation for Selecting an Optimal Subset," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(02), pages 1-17, April.
- W. Hare & J. Nutini, 2013. "A derivative-free approximate gradient sampling algorithm for finite minimax problems," Computational Optimization and Applications, Springer, vol. 56(1), pages 1-38, September.
- Li Wang & Feng Guo, 2014. "Semidefinite relaxations for semi-infinite polynomial programming," Computational Optimization and Applications, Springer, vol. 58(1), pages 133-159, May.
- S. Mishra & M. Jaiswal & H. Le Thi, 2012. "Nonsmooth semi-infinite programming problem using Limiting subdifferentials," Journal of Global Optimization, Springer, vol. 53(2), pages 285-296, June.
- Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
- E. Polak & R. S. Womersley & H. X. Yin, 2008. "An Algorithm Based on Active Sets and Smoothing for Discretized Semi-Infinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 311-328, August.
More about this item
Keywords
Semiinfinite minimax problems; Robust optimization; Discretization algorithms; Rate of convergence; Exponential smoothing technique;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:155:y:2012:i:3:d:10.1007_s10957-012-0109-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.