IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v166y2015i1d10.1007_s10957-014-0646-z.html
   My bibliography  Save this article

Group Update Method for Sparse Minimax Problems

Author

Listed:
  • Junxiang Li

    (University of Shanghai for Science & Technology)

  • Mingsong Cheng

    (Dalian University of Technology)

  • Bo Yu

    (Dalian University of Technology)

  • Shuting Zhang

    (Jilin University)

Abstract

A group update algorithm is presented for solving minimax problems with a finite number of functions, whose Hessians are sparse. The method uses the gradient evaluations as efficiently as possible by updating successively the elements in partitioning groups of the columns of every Hessian in the process of iterations. The chosen direction is determined directly by the nonzero elements of the Hessians in terms of partitioning groups. The local $$q$$ q -superlinear convergence of the method is proved, without requiring the imposition of a strict complementarity condition, and the $$r$$ r -convergence rate is estimated. Furthermore, two efficient methods handling nonconvex case are given. The global convergence of one method is proved, and the local $$q$$ q -superlinear convergence and $$r$$ r -convergence rate of another method are also proved or estimated by a novel technique. The robustness and efficiency of the algorithms are verified by numerical tests.

Suggested Citation

  • Junxiang Li & Mingsong Cheng & Bo Yu & Shuting Zhang, 2015. "Group Update Method for Sparse Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 257-277, July.
  • Handle: RePEc:spr:joptap:v:166:y:2015:i:1:d:10.1007_s10957-014-0646-z
    DOI: 10.1007/s10957-014-0646-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0646-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0646-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Songsong & Papageorgiou, Lazaros G., 2013. "Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry," Omega, Elsevier, vol. 41(2), pages 369-382.
    2. B Mor & G Mosheiov, 2012. "Minmax scheduling problems with common flow-allowance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(9), pages 1284-1293, September.
    3. Xiaoqiang Cai & Kok-Lay Teo & Xiaoqi Yang & Xun Yu Zhou, 2000. "Portfolio Optimization Under a Minimax Rule," Management Science, INFORMS, vol. 46(7), pages 957-972, July.
    4. E. Obasanjo & G. Tzallas-Regas & B. Rustem, 2010. "An Interior-Point Algorithm for Nonlinear Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 291-318, February.
    5. Sandjai Bhulai & Ger Koole & Auke Pot, 2008. "Simple Methods for Shift Scheduling in Multiskill Call Centers," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 411-420, December.
    6. E. Polak & R. S. Womersley & H. X. Yin, 2008. "An Algorithm Based on Active Sets and Smoothing for Discretized Semi-Infinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 311-328, August.
    7. J. O. Royset & E. Y. Pee, 2012. "Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 855-882, December.
    8. E. Y. Pee & J. O. Royset, 2011. "On Solving Large-Scale Finite Minimax Problems Using Exponential Smoothing," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 390-421, February.
    9. E. Polak & J. O. Royset & R. S. Womersley, 2003. "Algorithms with Adaptive Smoothing for Finite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(3), pages 459-484, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Y. Pee & J. O. Royset, 2011. "On Solving Large-Scale Finite Minimax Problems Using Exponential Smoothing," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 390-421, February.
    2. J. O. Royset & E. Y. Pee, 2012. "Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 855-882, December.
    3. Zhengyong Zhou & Xiaoyang Dai, 2023. "An active set strategy to address the ill-conditioning of smoothing methods for solving finite linear minimax problems," Journal of Global Optimization, Springer, vol. 85(2), pages 421-439, February.
    4. W. Hare & J. Nutini, 2013. "A derivative-free approximate gradient sampling algorithm for finite minimax problems," Computational Optimization and Applications, Springer, vol. 56(1), pages 1-38, September.
    5. Jin-bao Jian & Qing-juan Hu & Chun-ming Tang, 2014. "Superlinearly Convergent Norm-Relaxed SQP Method Based on Active Set Identification and New Line Search for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 859-883, December.
    6. Jin-bao Jian & Xing-de Mo & Li-juan Qiu & Su-ming Yang & Fu-sheng Wang, 2014. "Simple Sequential Quadratically Constrained Quadratic Programming Feasible Algorithm with Active Identification Sets for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 158-188, January.
    7. Johannes Royset, 2013. "On sample size control in sample average approximations for solving smooth stochastic programs," Computational Optimization and Applications, Springer, vol. 55(2), pages 265-309, June.
    8. Ryan Alimo & Pooriya Beyhaghi & Thomas R. Bewley, 2020. "Delaunay-based derivative-free optimization via global surrogates. Part III: nonconvex constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 743-776, August.
    9. Yi Chen & David Gao, 2016. "Global solutions to nonconvex optimization of 4th-order polynomial and log-sum-exp functions," Journal of Global Optimization, Springer, vol. 64(3), pages 417-431, March.
    10. El Mehdi, Er Raqabi & Ilyas, Himmich & Nizar, El Hachemi & Issmaïl, El Hallaoui & François, Soumis, 2023. "Incremental LNS framework for integrated production, inventory, and vessel scheduling: Application to a global supply chain," Omega, Elsevier, vol. 116(C).
    11. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    12. Longinidis, Pantelis & Georgiadis, Michael C., 2014. "Integration of sale and leaseback in the optimal design of supply chain networks," Omega, Elsevier, vol. 47(C), pages 73-89.
    13. B. Rustem & S. Žaković & P. Parpas, 2008. "Convergence of an Interior Point Algorithm for Continuous Minimax," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 87-103, January.
    14. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    15. Yang, Yuxiang & Goodarzi, Shadi & Jabbarzadeh, Armin & Fahimnia, Behnam, 2022. "In-house production and outsourcing under different emissions reduction regulations: An equilibrium decision model for global supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    16. Al-Husain, Raed & Khorramshahgol, Reza, 2020. "Incorporating analytical hierarchy process and goal programming to design responsive and efficient supply chains," Operations Research Perspectives, Elsevier, vol. 7(C).
    17. Huang, Xiaoxia, 2007. "Two new models for portfolio selection with stochastic returns taking fuzzy information," European Journal of Operational Research, Elsevier, vol. 180(1), pages 396-405, July.
    18. Bo Li & Yufei Sun & Kok Lay Teo, 2022. "An analytic solution for multi-period uncertain portfolio selection problem," Fuzzy Optimization and Decision Making, Springer, vol. 21(2), pages 319-333, June.
    19. E. Polak & R. S. Womersley & H. X. Yin, 2008. "An Algorithm Based on Active Sets and Smoothing for Discretized Semi-Infinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 311-328, August.
    20. Jyotirmayee Behera & Pankaj Kumar, 2024. "Implementation of machine learning in $$\ell _{\infty }$$ ℓ ∞ -based sparse Sharpe ratio portfolio optimization: a case study on Indian stock market," Operational Research, Springer, vol. 24(4), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:166:y:2015:i:1:d:10.1007_s10957-014-0646-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.