IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v77y2020i4d10.1007_s10898-019-00854-2.html
   My bibliography  Save this article

Delaunay-based derivative-free optimization via global surrogates. Part III: nonconvex constraints

Author

Listed:
  • Ryan Alimo

    (UC San Diego
    California Institute of Technology)

  • Pooriya Beyhaghi

    (UC San Diego)

  • Thomas R. Bewley

    (UC San Diego)

Abstract

This paper introduces a Delaunay-based derivative-free optimization algorithm, dubbed $$\varDelta $$ Δ -DOGS( $$\varOmega $$ Ω ), for problems with both (a) a nonconvex, computationally expensive objective function f(x), and (b) nonlinear, computationally expensive constraint functions $$c_\ell (x)$$ c ℓ ( x ) which, taken together, define a nonconvex, possibly even disconnected feasible domain $$\varOmega $$ Ω , which is assumed to lie within a known rectangular search domain $$\varOmega _s$$ Ω s , everywhere within which the f(x) and $$c_\ell (x)$$ c ℓ ( x ) may be evaluated. Approximations of both the objective function f(x) as well as the feasible domain $$\varOmega $$ Ω are developed and refined as the iterations proceed. The approach is practically limited to the problems with less than about ten adjustable parameters. The work is an extension of our original Delaunay-based optimization algorithm (see JOGO DOI: 10.1007/s10898-015-0384-2), and inherits many of the constructions and strengths of that algorithm, including: (1) a surrogate function p(x) interpolating all existing function evaluations and summarizing their trends, (2) a synthetic, piecewise-quadratic uncertainty function e(x) built on the framework of a Delaunay triangulation amongst existing datapoints, (3) a tunable balance between global exploration (large K) and local refinement (small K), (4) provable global convergence for a sufficiently large K, under the assumption that the objective and constraint functions are twice differentiable with bounded Hessians, (5) an Adaptive-K variant of the algorithm that efficiently tunes K automatically based on a target value of the objective function, and (6) remarkably fast global convergence on a variety of benchmark problems.

Suggested Citation

  • Ryan Alimo & Pooriya Beyhaghi & Thomas R. Bewley, 2020. "Delaunay-based derivative-free optimization via global surrogates. Part III: nonconvex constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 743-776, August.
  • Handle: RePEc:spr:jglopt:v:77:y:2020:i:4:d:10.1007_s10898-019-00854-2
    DOI: 10.1007/s10898-019-00854-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00854-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00854-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pooriya Beyhaghi & Thomas R. Bewley, 2016. "Delaunay-based derivative-free optimization via global surrogates, part II: convex constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 383-415, November.
    2. E. Y. Pee & J. O. Royset, 2011. "On Solving Large-Scale Finite Minimax Problems Using Exponential Smoothing," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 390-421, February.
    3. Paul Belitz & Thomas Bewley, 2013. "New horizons in sphere-packing theory, part II: lattice-based derivative-free optimization via global surrogates," Journal of Global Optimization, Springer, vol. 56(1), pages 61-91, May.
    4. E. Polak & J. O. Royset & R. S. Womersley, 2003. "Algorithms with Adaptive Smoothing for Finite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(3), pages 459-484, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. O. Royset & E. Y. Pee, 2012. "Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 855-882, December.
    2. Pooriya Beyhaghi & Thomas Bewley, 2017. "Implementation of Cartesian grids to accelerate Delaunay-based derivative-free optimization," Journal of Global Optimization, Springer, vol. 69(4), pages 927-949, December.
    3. Johannes Royset, 2013. "On sample size control in sample average approximations for solving smooth stochastic programs," Computational Optimization and Applications, Springer, vol. 55(2), pages 265-309, June.
    4. Junxiang Li & Mingsong Cheng & Bo Yu & Shuting Zhang, 2015. "Group Update Method for Sparse Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 257-277, July.
    5. Yi Chen & David Gao, 2016. "Global solutions to nonconvex optimization of 4th-order polynomial and log-sum-exp functions," Journal of Global Optimization, Springer, vol. 64(3), pages 417-431, March.
    6. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    7. B. Rustem & S. Žaković & P. Parpas, 2008. "Convergence of an Interior Point Algorithm for Continuous Minimax," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 87-103, January.
    8. E. Polak & R. S. Womersley & H. X. Yin, 2008. "An Algorithm Based on Active Sets and Smoothing for Discretized Semi-Infinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 311-328, August.
    9. Xiaojiao Tong & Hailin Sun & Xiao Luo & Quanguo Zheng, 2018. "Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems," Journal of Global Optimization, Springer, vol. 70(1), pages 131-158, January.
    10. E. Y. Pee & J. O. Royset, 2011. "On Solving Large-Scale Finite Minimax Problems Using Exponential Smoothing," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 390-421, February.
    11. Gonghao Duan & Ruiqing Niu, 2018. "Lake Area Analysis Using Exponential Smoothing Model and Long Time-Series Landsat Images in Wuhan, China," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
    12. Daehan Won & Hasan Manzour & Wanpracha Chaovalitwongse, 2020. "Convex Optimization for Group Feature Selection in Networked Data," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 182-198, January.
    13. Giulio Galvan & Marco Sciandrone & Stefano Lucidi, 2021. "A parameter-free unconstrained reformulation for nonsmooth problems with convex constraints," Computational Optimization and Applications, Springer, vol. 80(1), pages 33-53, September.
    14. E. Polak & J. O. Royset, 2003. "Algorithms for Finite and Semi-Infinite Min–Max–Min Problems Using Adaptive Smoothing Techniques," Journal of Optimization Theory and Applications, Springer, vol. 119(3), pages 421-457, December.
    15. Zhengyong Zhou & Xiaoyang Dai, 2023. "An active set strategy to address the ill-conditioning of smoothing methods for solving finite linear minimax problems," Journal of Global Optimization, Springer, vol. 85(2), pages 421-439, February.
    16. Pooriya Beyhaghi & Daniele Cavaglieri & Thomas Bewley, 2016. "Delaunay-based derivative-free optimization via global surrogates, part I: linear constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 331-382, November.
    17. W. Hare & J. Nutini, 2013. "A derivative-free approximate gradient sampling algorithm for finite minimax problems," Computational Optimization and Applications, Springer, vol. 56(1), pages 1-38, September.
    18. Pooriya Beyhaghi & Thomas R. Bewley, 2016. "Delaunay-based derivative-free optimization via global surrogates, part II: convex constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 383-415, November.
    19. Ryan Alimo & Daniele Cavaglieri & Pooriya Beyhaghi & Thomas R. Bewley, 2021. "Design of IMEXRK time integration schemes via Delaunay-based derivative-free optimization with nonconvex constraints and grid-based acceleration," Journal of Global Optimization, Springer, vol. 79(3), pages 567-591, March.
    20. Mohamed A. Tawhid & Ahmed F. Ali, 2016. "Simplex particle swarm optimization with arithmetical crossover for solving global optimization problems," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 705-740, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:77:y:2020:i:4:d:10.1007_s10898-019-00854-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.