IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v36y2024i2p587-599.html
   My bibliography  Save this article

Ensemble Variance Reduction Methods for Stochastic Mixed-Integer Programming and their Application to the Stochastic Facility Location Problem

Author

Listed:
  • Jiajun Xu

    (Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089)

  • Suvrajeet Sen

    (Daniel J. Epstein Department of Industrial & Systems Engineering, University of Southern California, Los Angeles, California 90089)

Abstract

Sample average approximation (SAA), the standard approach to stochastic mixed-integer programming, does not provide guidance for cases with limited computational budgets. In such settings, variance reduction is critical in identifying good decisions. This paper explores two closely related ensemble methods to determine effective decisions with a probabilistic guarantee. (a) The first approach recommends a decision by coordinating aggregation in the space of decisions as well as aggregation of objective values. This combination of aggregation methods generalizes the bagging method and the “compromise decision” of stochastic linear programming. Combining these concepts, we propose a stopping rule that provides an upper bound on the probability of early termination. (b) The second approach applies efficient computational budget allocation for objective function evaluation and contributes to identifying the best solution with a predicted lower bound on the probability of correct selection. It also reduces the variance of the upper bound estimate at optimality. Furthermore, it adaptively selects the evaluation sample size. Both approaches provide approximately optimal solutions even in cases with a huge number of scenarios, especially when scenarios are generated by using oracles/simulators. Finally, we demonstrate the effectiveness of these methods via extensive computational results for “megascale” (extremely large scale) stochastic facility location problems.

Suggested Citation

  • Jiajun Xu & Suvrajeet Sen, 2024. "Ensemble Variance Reduction Methods for Stochastic Mixed-Integer Programming and their Application to the Stochastic Facility Location Problem," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 587-599, March.
  • Handle: RePEc:inm:orijoc:v:36:y:2024:i:2:p:587-599
    DOI: 10.1287/ijoc.2021.0324
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.0324
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.0324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Suvrajeet Sen & Yifan Liu, 2016. "Mitigating Uncertainty via Compromise Decisions in Two-Stage Stochastic Linear Programming: Variance Reduction," Operations Research, INFORMS, vol. 64(6), pages 1422-1437, December.
    2. Yunxiao Deng & Suvrajeet Sen, 2022. "Predictive stochastic programming," Computational Management Science, Springer, vol. 19(1), pages 65-98, January.
    3. Chun-Hung Chen & Donghai He & Michael Fu & Loo Hay Lee, 2008. "Efficient Simulation Budget Allocation for Selecting an Optimal Subset," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 579-595, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad H. Almomani & Mahmoud H. Alrefaei, 2016. "Ordinal Optimization with Computing Budget Allocation for Selecting an Optimal Subset," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(02), pages 1-17, April.
    2. Wai‐Peng Wong & Qiang Deng & Ming-Lang Tseng & Loo‐Hay Lee & Chee‐Wooi Hooy, 2014. "A Stochastic Setting To Bank Financial Performance For Refining Efficiency Estimates," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 225-245, October.
    3. Clara Lage & Claudia Sagastizábal & Mikhail Solodov, 2020. "Multiplier Stabilization Applied to Two-Stage Stochastic Programs," Post-Print halshs-02900862, HAL.
    4. Ward Romeijnders & David P. Morton & Maarten H. van der Vlerk, 2017. "Assessing the Quality of Convex Approximations for Two-Stage Totally Unimodular Integer Recourse Models," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 211-231, May.
    5. Cheng Li & Siyang Gao & Jianzhong Du, 2023. "Convergence Analysis of Stochastic Kriging-Assisted Simulation with Random Covariates," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 386-402, March.
    6. Atakan, Semih & Gangammanavar, Harsha & Sen, Suvrajeet, 2022. "Towards a sustainable power grid: Stochastic hierarchical planning for high renewable integration," European Journal of Operational Research, Elsevier, vol. 302(1), pages 381-391.
    7. Groves, Matthew & Branke, Juergen, 2019. "Top-κ selection with pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 274(2), pages 615-626.
    8. Gongbo Zhang & Yijie Peng & Jianghua Zhang & Enlu Zhou, 2023. "Asymptotically Optimal Sampling Policy for Selecting Top- m Alternatives," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1261-1285, November.
    9. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Zi Ding, 2015. "Sequential Selection with Unknown Correlation Structures," Operations Research, INFORMS, vol. 63(4), pages 931-948, August.
    10. Clara Lage & Claudia Sagastizábal & Mikhail Solodov, 2020. "Multiplier Stabilization Applied to Two-Stage Stochastic Programs," Documents de travail du Centre d'Economie de la Sorbonne 20010, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. J. O. Royset & E. Y. Pee, 2012. "Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 855-882, December.
    12. Michael Ludkovski & James Risk, 2017. "Sequential Design and Spatial Modeling for Portfolio Tail Risk Measurement," Papers 1710.05204, arXiv.org, revised May 2018.
    13. Siyang Gao & Weiwei Chen & Leyuan Shi, 2017. "A New Budget Allocation Framework for the Expected Opportunity Cost," Operations Research, INFORMS, vol. 65(3), pages 787-803, June.
    14. Zhongshun Shi & Siyang Gao & Hui Xiao & Weiwei Chen, 2019. "A worst‐case formulation for constrained ranking and selection with input uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 648-662, December.
    15. Tsai, Shing Chih & Fu, Sheng Yang, 2014. "Genetic-algorithm-based simulation optimization considering a single stochastic constraint," European Journal of Operational Research, Elsevier, vol. 236(1), pages 113-125.
    16. Harsha Gangammanavar & Yifan Liu & Suvrajeet Sen, 2021. "Stochastic Decomposition for Two-Stage Stochastic Linear Programs with Random Cost Coefficients," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 51-71, January.
    17. Yong Tian & Bojia Ye & Marc Sáez Estupiñá & Lili Wan, 2018. "Stochastic Simulation Optimization for Route Selection Strategy Based on Flight Delay Cost," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(06), pages 1-24, December.
    18. Site Wang & Harsha Gangammanavar & Sandra Ekşioğlu & Scott J. Mason, 2020. "Statistical estimation of operating reserve requirements using rolling horizon stochastic optimization," Annals of Operations Research, Springer, vol. 292(1), pages 371-397, September.
    19. Clara Lage & Claudia Sagastizábal & Mikhail Solodov, 2019. "Multiplier Stabilization Applied to Two-Stage Stochastic Programs," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 158-178, October.
    20. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:36:y:2024:i:2:p:587-599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.