Algorithms with Adaptive Smoothing for Finite Minimax Problems
Author
Abstract
Suggested Citation
DOI: 10.1023/B:JOTA.0000006685.60019.3e
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- F. Guerra Vazquez & H. Günzel & H.Th. Jongen, 2001. "On Logarithmic Smoothing of the Maximum Function," Annals of Operations Research, Springer, vol. 101(1), pages 209-220, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Helene Krieg & Tobias Seidel & Jan Schwientek & Karl-Heinz Küfer, 2022. "Solving continuous set covering problems by means of semi-infinite optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 39-82, August.
- Johannes Royset, 2013. "On sample size control in sample average approximations for solving smooth stochastic programs," Computational Optimization and Applications, Springer, vol. 55(2), pages 265-309, June.
- E. Polak & J. O. Royset, 2003. "Algorithms for Finite and Semi-Infinite Min–Max–Min Problems Using Adaptive Smoothing Techniques," Journal of Optimization Theory and Applications, Springer, vol. 119(3), pages 421-457, December.
- B. Rustem & S. Žaković & P. Parpas, 2008. "Convergence of an Interior Point Algorithm for Continuous Minimax," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 87-103, January.
- Junxiang Li & Mingsong Cheng & Bo Yu & Shuting Zhang, 2015. "Group Update Method for Sparse Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 257-277, July.
- E. Y. Pee & J. O. Royset, 2011. "On Solving Large-Scale Finite Minimax Problems Using Exponential Smoothing," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 390-421, February.
- Zhengyong Zhou & Xiaoyang Dai, 2023. "An active set strategy to address the ill-conditioning of smoothing methods for solving finite linear minimax problems," Journal of Global Optimization, Springer, vol. 85(2), pages 421-439, February.
- Juan Liang & Linke Hou & Xiaowu Li & Feng Pan & Taixia Cheng & Lin Wang, 2018. "Hybrid Second Order Method for Orthogonal Projection onto Parametric Curve in n -Dimensional Euclidean Space," Mathematics, MDPI, vol. 6(12), pages 1-23, December.
- Yi Chen & David Gao, 2016. "Global solutions to nonconvex optimization of 4th-order polynomial and log-sum-exp functions," Journal of Global Optimization, Springer, vol. 64(3), pages 417-431, March.
- Ryan Alimo & Pooriya Beyhaghi & Thomas R. Bewley, 2020. "Delaunay-based derivative-free optimization via global surrogates. Part III: nonconvex constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 743-776, August.
- J. O. Royset & E. Y. Pee, 2012. "Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 855-882, December.
- Mohamed A. Tawhid & Ahmed F. Ali, 2016. "Simplex particle swarm optimization with arithmetical crossover for solving global optimization problems," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 705-740, December.
- W. Hare & J. Nutini, 2013. "A derivative-free approximate gradient sampling algorithm for finite minimax problems," Computational Optimization and Applications, Springer, vol. 56(1), pages 1-38, September.
- Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
- E. Polak & R. S. Womersley & H. X. Yin, 2008. "An Algorithm Based on Active Sets and Smoothing for Discretized Semi-Infinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 311-328, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.More about this item
Keywords
Finite minimax; nonsmooth optimization algorithms; smoothing techniques; feedback precision-adjustment rule;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:119:y:2003:i:3:d:10.1023_b:jota.0000006685.60019.3e. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.