IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v58y2010i4-part-1p889-901.html
   My bibliography  Save this article

On Choosing Parameters in Retrospective-Approximation Algorithms for Stochastic Root Finding and Simulation Optimization

Author

Listed:
  • Raghu Pasupathy

    (Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061)

Abstract

The stochastic root-finding problem is that of finding a zero of a vector-valued function known only through a stochastic simulation. The simulation-optimization problem is that of locating a real-valued function's minimum, again with only a stochastic simulation that generates function estimates. Retrospective approximation (RA) is a sample-path technique for solving such problems, where the solution to the underlying problem is approached via solutions to a sequence of approximate deterministic problems, each of which is generated using a specified sample size, and solved to a specified error tolerance. Our primary focus, in this paper, is providing guidance on choosing the sequence of sample sizes and error tolerances in RA algorithms. We first present an overview of the conditions that guarantee the correct convergence of RA's iterates. Then we characterize a class of error-tolerance and sample-size sequences that are superior to others in a certain precisely defined sense. We also identify and recommend members of this class and provide a numerical example illustrating the key results.

Suggested Citation

  • Raghu Pasupathy, 2010. "On Choosing Parameters in Retrospective-Approximation Algorithms for Stochastic Root Finding and Simulation Optimization," Operations Research, INFORMS, vol. 58(4-part-1), pages 889-901, August.
  • Handle: RePEc:inm:oropre:v:58:y:2010:i:4-part-1:p:889-901
    DOI: 10.1287/opre.1090.0773
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1090.0773
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1090.0773?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephen M. Robinson, 1996. "Analysis of Sample-Path Optimization," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 513-528, August.
    2. Michael C. Fu, 2002. "Feature Article: Optimization for simulation: Theory vs. Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 192-215, August.
    3. Y. Wardi & B. Melamed & C.G. Cassandras & C.G. Panayiòtou, 2002. "Online IPA Gradient Estimators in Stochastic Continuous Fluid Models," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 369-405, November.
    4. Tito Homem-de-Mello & Alexander Shapiro & Mark L. Spearman, 1999. "Finding Optimal Material Release Times Using Simulation-Based Optimization," Management Science, INFORMS, vol. 45(1), pages 86-102, January.
    5. Júlíus Atlason & Marina Epelman & Shane Henderson, 2004. "Call Center Staffing with Simulation and Cutting Plane Methods," Annals of Operations Research, Springer, vol. 127(1), pages 333-358, March.
    6. Julia L. Higle & Suvrajeet Sen, 1991. "Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 650-669, August.
    7. Júlíus Atlason & Marina A. Epelman & Shane G. Henderson, 2008. "Optimizing Call Center Staffing Using Simulation and Analytic Center Cutting-Plane Methods," Management Science, INFORMS, vol. 54(2), pages 295-309, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anand Deo & Karthyek Murthy, 2023. "Importance Sampling for Minimization of Tail Risks: A Tutorial," Papers 2307.04676, arXiv.org.
    2. Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
    3. Hu, Shaolong & Hu, Qingmi & Tao, Sha & Dong, Zhijie Sasha, 2023. "A multi-stage stochastic programming approach for pre-positioning of relief supplies considering returns," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    4. Nataša Krejić & Nataša Krklec Jerinkić, 2019. "Spectral projected gradient method for stochastic optimization," Journal of Global Optimization, Springer, vol. 73(1), pages 59-81, January.
    5. Bismark Singh & David P. Morton & Surya Santoso, 2018. "An adaptive model with joint chance constraints for a hybrid wind-conventional generator system," Computational Management Science, Springer, vol. 15(3), pages 563-582, October.
    6. J. O. Royset & E. Y. Pee, 2012. "Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 855-882, December.
    7. Hu, Shaolong & Dong, Zhijie Sasha & Dai, Rui, 2024. "A machine learning based sample average approximation for supplier selection with option contract in humanitarian relief," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    8. Wang, Honggang, 2012. "Retrospective optimization of mixed-integer stochastic systems using dynamic simplex linear interpolation," European Journal of Operational Research, Elsevier, vol. 217(1), pages 141-148.
    9. Johannes O. Royset & Roger J-B Wets, 2016. "Optimality Functions and Lopsided Convergence," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 965-983, June.
    10. Tsai, Shing Chih & Zheng, Ya-Xin, 2013. "A simulation optimization approach for a two-echelon inventory system with service level constraints," European Journal of Operational Research, Elsevier, vol. 229(2), pages 364-374.
    11. Suvrajeet Sen & Yifan Liu, 2016. "Mitigating Uncertainty via Compromise Decisions in Two-Stage Stochastic Linear Programming: Variance Reduction," Operations Research, INFORMS, vol. 64(6), pages 1422-1437, December.
    12. Stefania Bellavia & Nataša Krejić & Benedetta Morini, 2020. "Inexact restoration with subsampled trust-region methods for finite-sum minimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 701-736, July.
    13. Johannes Royset, 2013. "On sample size control in sample average approximations for solving smooth stochastic programs," Computational Optimization and Applications, Springer, vol. 55(2), pages 265-309, June.
    14. Honggang Wang, 2017. "Subspace dynamic‐simplex linear interpolation search for mixed‐integer black‐box optimization problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 305-322, June.
    15. Devang Sinha & Siddhartha P. Chakrabarty, 2024. "Multilevel Monte Carlo in Sample Average Approximation: Convergence, Complexity and Application," Papers 2407.18504, arXiv.org.
    16. Kyle Cooper & Susan R. Hunter & Kalyani Nagaraj, 2020. "Biobjective Simulation Optimization on Integer Lattices Using the Epsilon-Constraint Method in a Retrospective Approximation Framework," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1080-1100, October.
    17. Xiang He & Xiqun (Michael) Chen & Chenfeng Xiong & Zheng Zhu & Lei Zhang, 2017. "Optimal Time-Varying Pricing for Toll Roads Under Multiple Objectives: A Simulation-Based Optimization Approach," Transportation Science, INFORMS, vol. 51(2), pages 412-426, May.
    18. Johannes O. Royset & Roberto Szechtman, 2013. "Optimal Budget Allocation for Sample Average Approximation," Operations Research, INFORMS, vol. 61(3), pages 762-776, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raymond K.-M. Cheung & Warren B. Powell, 2000. "Shape -- A Stochastic Hybrid Approximation Procedure for Two-Stage Stochastic Programs," Operations Research, INFORMS, vol. 48(1), pages 73-79, February.
    2. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    3. Kaan Kuzu & Refik Soyer, 2018. "Bayesian modeling of abandonments in ticket queues," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 499-521, September.
    4. Gianpaolo Ghiani & Emanuele Manni & Antonella Quaranta, 2010. "Shift Scheduling Problem in Same-Day Courier Industry," Transportation Science, INFORMS, vol. 44(1), pages 116-124, February.
    5. Sigrún Andradóttir, 2002. "Simulation Optimization: Integrating Research and Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 216-219, August.
    6. Z. L. Chen & W. B. Powell, 1999. "Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 497-524, September.
    7. Tien Thanh Dam & Thuy Anh Ta & Tien Mai, 2022. "Joint chance-constrained staffing optimization in multi-skill call centers," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 354-378, August.
    8. Ran Liu & Xiaolan Xie, 2018. "Physician Staffing for Emergency Departments with Time-Varying Demand," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 588-607, August.
    9. Robbins, Thomas R. & Harrison, Terry P., 2010. "A stochastic programming model for scheduling call centers with global Service Level Agreements," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1608-1619, December.
    10. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    11. Yue Zhang & Martin L. Puterman & Matthew Nelson & Derek Atkins, 2012. "A Simulation Optimization Approach to Long-Term Care Capacity Planning," Operations Research, INFORMS, vol. 60(2), pages 249-261, April.
    12. Kleijnen, J.P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2008. "Constrained Optimization in Simulation : A Novel Approach," Discussion Paper 2008-95, Tilburg University, Center for Economic Research.
    13. Ingolfsson, Armann & Campello, Fernanda & Wu, Xudong & Cabral, Edgar, 2010. "Combining integer programming and the randomization method to schedule employees," European Journal of Operational Research, Elsevier, vol. 202(1), pages 153-163, April.
    14. Ta, Thuy Anh & Chan, Wyean & Bastin, Fabian & L’Ecuyer, Pierre, 2021. "A simulation-based decomposition approach for two-stage staffing optimization in call centers under arrival rate uncertainty," European Journal of Operational Research, Elsevier, vol. 293(3), pages 966-979.
    15. Suvrajeet Sen & Yifan Liu, 2016. "Mitigating Uncertainty via Compromise Decisions in Two-Stage Stochastic Linear Programming: Variance Reduction," Operations Research, INFORMS, vol. 64(6), pages 1422-1437, December.
    16. Örmeci, E. Lerzan & Salman, F. Sibel & Yücel, Eda, 2014. "Staff rostering in call centers providing employee transportation," Omega, Elsevier, vol. 43(C), pages 41-53.
    17. Tsai, Shing Chih & Zheng, Ya-Xin, 2013. "A simulation optimization approach for a two-echelon inventory system with service level constraints," European Journal of Operational Research, Elsevier, vol. 229(2), pages 364-374.
    18. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    19. Rezapour, Shabnam & Srinivasan, Ramakrishnan & Tew, Jeffrey & Allen, Janet K. & Mistree, Farrokh, 2018. "Correlation between strategic and operational risk mitigation strategies in supply networks," International Journal of Production Economics, Elsevier, vol. 201(C), pages 225-248.
    20. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:58:y:2010:i:4-part-1:p:889-901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.