IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v65y2016i1d10.1007_s10589-016-9841-1.html
   My bibliography  Save this article

New results on subgradient methods for strongly convex optimization problems with a unified analysis

Author

Listed:
  • Masaru Ito

    (Tokyo Institute of Technology)

Abstract

We develop subgradient- and gradient-based methods for minimizing strongly convex functions under a notion which generalizes the standard Euclidean strong convexity. We propose a unifying framework for subgradient methods which yields two kinds of methods, namely, the proximal gradient method (PGM) and the conditional gradient method (CGM), unifying several existing methods. The unifying framework provides tools to analyze the convergence of PGMs and CGMs for non-smooth, (weakly) smooth, and further for structured problems such as the inexact oracle models. The proposed subgradient methods yield optimal PGMs for several classes of problems and yield optimal and nearly optimal CGMs for smooth and weakly smooth problems, respectively.

Suggested Citation

  • Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
  • Handle: RePEc:spr:coopap:v:65:y:2016:i:1:d:10.1007_s10589-016-9841-1
    DOI: 10.1007/s10589-016-9841-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-016-9841-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-016-9841-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2013. "First-order methods with inexact oracle: the strongly convex case," LIDAM Discussion Papers CORE 2013016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2011. "First-order methods of smooth convex optimization with inexact oracle," LIDAM Discussion Papers CORE 2011002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. NESTEROV, Yu., 2005. "Excessive gap technique in nonsmooth convex minimization," LIDAM Reprints CORE 1818, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. NESTEROV, Yurii, 2015. "Universal gradient methods for convex optimization problems," LIDAM Reprints CORE 2701, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. NESTEROV, Yurii, 2015. "Complexity bounds for primal-dual methods minimizing the model of objective function," LIDAM Discussion Papers CORE 2015003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    2. Masoud Ahookhosh & Arnold Neumaier, 2018. "Solving structured nonsmooth convex optimization with complexity $$\mathcal {O}(\varepsilon ^{-1/2})$$ O ( ε - 1 / 2 )," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 110-145, April.
    3. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Le Thi Khanh Hien & Cuong V. Nguyen & Huan Xu & Canyi Lu & Jiashi Feng, 2019. "Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 541-566, May.
    5. Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
    6. Huynh Ngai & Ta Anh Son, 2022. "Generalized Nesterov’s accelerated proximal gradient algorithms with convergence rate of order o(1/k2)," Computational Optimization and Applications, Springer, vol. 83(2), pages 615-649, November.
    7. Masaru Ito & Mituhiro Fukuda, 2021. "Nearly Optimal First-Order Methods for Convex Optimization under Gradient Norm Measure: an Adaptive Regularization Approach," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 770-804, March.
    8. Jueyou Li & Zhiyou Wu & Changzhi Wu & Qiang Long & Xiangyu Wang, 2016. "An Inexact Dual Fast Gradient-Projection Method for Separable Convex Optimization with Linear Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 153-171, January.
    9. Guoyin Li & Alfred Ma & Ting Pong, 2014. "Robust least square semidefinite programming with applications," Computational Optimization and Applications, Springer, vol. 58(2), pages 347-379, June.
    10. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2013. "First-order methods with inexact oracle: the strongly convex case," LIDAM Discussion Papers CORE 2013016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. DEVOLDER, Olivier, 2011. "Stochastic first order methods in smooth convex optimization," LIDAM Discussion Papers CORE 2011070, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Daskalakis, Constantinos & Deckelbaum, Alan & Kim, Anthony, 2015. "Near-optimal no-regret algorithms for zero-sum games," Games and Economic Behavior, Elsevier, vol. 92(C), pages 327-348.
    13. Kimon Fountoulakis & Jacek Gondzio, 2016. "Performance of first- and second-order methods for $$\ell _1$$ ℓ 1 -regularized least squares problems," Computational Optimization and Applications, Springer, vol. 65(3), pages 605-635, December.
    14. Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
    15. Fedor Stonyakin & Ilya Kuruzov & Boris Polyak, 2023. "Stopping Rules for Gradient Methods for Non-convex Problems with Additive Noise in Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 531-551, August.
    16. Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018. "Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 455-476, August.
    17. Majid Jahani & Naga Venkata C. Gudapati & Chenxin Ma & Rachael Tappenden & Martin Takáč, 2021. "Fast and safe: accelerated gradient methods with optimality certificates and underestimate sequences," Computational Optimization and Applications, Springer, vol. 79(2), pages 369-404, June.
    18. Yurii Nesterov, 2009. "Unconstrained Convex Minimization in Relative Scale," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 180-193, February.
    19. Niao He & Anatoli Juditsky & Arkadi Nemirovski, 2015. "Mirror Prox algorithm for multi-term composite minimization and semi-separable problems," Computational Optimization and Applications, Springer, vol. 61(2), pages 275-319, June.
    20. Jiaming Liang & Renato D. C. Monteiro & Chee-Khian Sim, 2021. "A FISTA-type accelerated gradient algorithm for solving smooth nonconvex composite optimization problems," Computational Optimization and Applications, Springer, vol. 79(3), pages 649-679, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:65:y:2016:i:1:d:10.1007_s10589-016-9841-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.