Certification aspects of the fast gradient method for solving the dual of parametric convex programs
Author
Abstract
Suggested Citation
DOI: 10.1007/s00186-012-0420-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2011.
"First-order methods of smooth convex optimization with inexact oracle,"
LIDAM Discussion Papers CORE
2011002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2014. "First-order methods of smooth convex optimization with inexact oracle," LIDAM Reprints CORE 2594, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- DEVOLDER, Olivier, 2011. "Stochastic first order methods in smooth convex optimization," LIDAM Discussion Papers CORE 2011070, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2012. "Double smoothing technique for large-scale linearly constrained convex optimization," LIDAM Reprints CORE 2423, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- repec:cor:louvrp:-2423 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016.
"Exact worst-case performance of first-order methods for composite convex optimization,"
LIDAM Discussion Papers CORE
2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Adrien B. TAYLOR & Julien M. HENDRICKX & François GLINEUR, 2017. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Reprints CORE 2875, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- J. O. Royset & E. Y. Pee, 2012. "Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 855-882, December.
- DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2013. "Intermediate gradient methods for smooth convex problems with inexact oracle," LIDAM Discussion Papers CORE 2013017, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Masoud Ahookhosh & Arnold Neumaier, 2018. "Solving structured nonsmooth convex optimization with complexity $$\mathcal {O}(\varepsilon ^{-1/2})$$ O ( ε - 1 / 2 )," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 110-145, April.
- Renato D. C. Monteiro & Camilo Ortiz & Benar F. Svaiter, 2016. "An adaptive accelerated first-order method for convex optimization," Computational Optimization and Applications, Springer, vol. 64(1), pages 31-73, May.
- Jueyou Li & Zhiyou Wu & Changzhi Wu & Qiang Long & Xiangyu Wang, 2016. "An Inexact Dual Fast Gradient-Projection Method for Separable Convex Optimization with Linear Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 153-171, January.
- Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
- Xuexue Zhang & Sanyang Liu & Nannan Zhao, 2023. "An Extended Gradient Method for Smooth and Strongly Convex Functions," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
- Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
- Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.
- Liam Madden & Stephen Becker & Emiliano Dall’Anese, 2021. "Bounds for the Tracking Error of First-Order Online Optimization Methods," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 437-457, May.
- DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2013. "First-order methods with inexact oracle: the strongly convex case," LIDAM Discussion Papers CORE 2013016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- NESTEROV, Yurii, 2013. "Universal gradient methods for convex optimization problems," LIDAM Discussion Papers CORE 2013026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Le Thi Khanh Hien & Cuong V. Nguyen & Huan Xu & Canyi Lu & Jiashi Feng, 2019. "Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 541-566, May.
- DEVOLDER, Olivier, 2011. "Stochastic first order methods in smooth convex optimization," LIDAM Discussion Papers CORE 2011070, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Kimon Fountoulakis & Rachael Tappenden, 2018. "A flexible coordinate descent method," Computational Optimization and Applications, Springer, vol. 70(2), pages 351-394, June.
- Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
- Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
- Vishwajit Hegde & Arvind S. Menon & L. A. Prashanth & Krishna Jagannathan, 2021. "Online Estimation and Optimization of Utility-Based Shortfall Risk," Papers 2111.08805, arXiv.org, revised Nov 2023.
- Radu Boţ & Christopher Hendrich, 2013. "A double smoothing technique for solving unconstrained nondifferentiable convex optimization problems," Computational Optimization and Applications, Springer, vol. 54(2), pages 239-262, March.
More about this item
Keywords
Fast gradient method; Certification; Lagrange relaxation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:77:y:2013:i:3:p:305-321. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.