Convergence of an Interior Point Algorithm for Continuous Minimax
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-007-9290-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- I. Akrotirianakis & B. Rustem, 2005. "Globally Convergent Interior-Point Algorithm for Nonlinear Programming," Journal of Optimization Theory and Applications, Springer, vol. 125(3), pages 497-521, June.
- E. Polak & J. O. Royset, 2003. "Algorithms for Finite and Semi-Infinite Min–Max–Min Problems Using Adaptive Smoothing Techniques," Journal of Optimization Theory and Applications, Springer, vol. 119(3), pages 421-457, December.
- E. Polak & J. O. Royset & R. S. Womersley, 2003. "Algorithms with Adaptive Smoothing for Finite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(3), pages 459-484, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.
- P. Parpas & B. Rustem, 2009. "An Algorithm for the Global Optimization of a Class of Continuous Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 461-473, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
- Hui-juan Xiong & Bo Yu, 2010. "An aggregate deformation homotopy method for min-max-min problems with max-min constraints," Computational Optimization and Applications, Springer, vol. 47(3), pages 501-527, November.
- W. Hare & J. Nutini, 2013. "A derivative-free approximate gradient sampling algorithm for finite minimax problems," Computational Optimization and Applications, Springer, vol. 56(1), pages 1-38, September.
- E. Polak & R. S. Womersley & H. X. Yin, 2008. "An Algorithm Based on Active Sets and Smoothing for Discretized Semi-Infinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 311-328, August.
- E. Obasanjo & G. Tzallas-Regas & B. Rustem, 2010. "An Interior-Point Algorithm for Nonlinear Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 291-318, February.
- Alfred Auslender & Miguel A. Goberna & Marco A. López, 2009. "Penalty and Smoothing Methods for Convex Semi-Infinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 303-319, May.
- Z. Akbari & R. Yousefpour & M. Reza Peyghami, 2015. "A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 733-754, March.
- E. Y. Pee & J. O. Royset, 2011. "On Solving Large-Scale Finite Minimax Problems Using Exponential Smoothing," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 390-421, February.
- J. O. Royset & E. Y. Pee, 2012. "Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 855-882, December.
- Johannes Royset, 2013. "On sample size control in sample average approximations for solving smooth stochastic programs," Computational Optimization and Applications, Springer, vol. 55(2), pages 265-309, June.
- Adil Bagirov & Asef Ganjehlou, 2008. "An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(2), pages 187-206, April.
- Hatim Djelassi & Alexander Mitsos, 2021. "Global Solution of Semi-infinite Programs with Existence Constraints," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 863-881, March.
- E. Polak & J. O. Royset, 2003. "Algorithms for Finite and Semi-Infinite Min–Max–Min Problems Using Adaptive Smoothing Techniques," Journal of Optimization Theory and Applications, Springer, vol. 119(3), pages 421-457, December.
- Junxiang Li & Mingsong Cheng & Bo Yu & Shuting Zhang, 2015. "Group Update Method for Sparse Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 257-277, July.
- Zhengyong Zhou & Xiaoyang Dai, 2023. "An active set strategy to address the ill-conditioning of smoothing methods for solving finite linear minimax problems," Journal of Global Optimization, Springer, vol. 85(2), pages 421-439, February.
- Yan-Chao Liang & Gui-Hua Lin, 2012. "Stationarity Conditions and Their Reformulations for Mathematical Programs with Vertical Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 54-70, July.
- A. M. Bagirov & B. Karasözen & M. Sezer, 2008. "Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 317-334, May.
- Ryan Alimo & Pooriya Beyhaghi & Thomas R. Bewley, 2020. "Delaunay-based derivative-free optimization via global surrogates. Part III: nonconvex constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 743-776, August.
- Zhou Sheng & Gonglin Yuan, 2018. "An effective adaptive trust region algorithm for nonsmooth minimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 251-271, September.
- Nezam Mahdavi-Amiri & Rohollah Yousefpour, 2012. "An Effective Nonsmooth Optimization Algorithm for Locally Lipschitz Functions," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 180-195, October.
More about this item
Keywords
Worst case analysis; Continuous minimax algorithms; Interior point methods; Semi–infinite programming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:136:y:2008:i:1:d:10.1007_s10957-007-9290-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.