IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v39y2022i1d10.1007_s00357-021-09392-7.html
   My bibliography  Save this article

A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models

Author

Listed:
  • Kazuhiro Yamaguchi

    (University of Tsukuba, Institutes of Human Sciences)

  • Jonathan Templin

    (University of Iowa)

Abstract

Diagnostic classification models (DCMs) are restricted latent class models with a set of cross-class equality constraints and additional monotonicity constraints on their item parameters, both of which are needed to ensure the meaning of classes and model parameters. In this paper, we develop an efficient, Gibbs sampling-based Bayesian Markov chain Monte Carlo estimation method for general DCMs with monotonicity constraints. A simulation study was conducted to evaluate parameter recovery of the algorithm which showed accurate estimation of model parameters. Moreover, the proposed algorithm was compared to a previously developed Gibbs sampling algorithm which imposed constraints on only the main effect item parameters of the log-linear cognitive diagnosis model. The newly proposed algorithm showed less bias and faster convergence. An analysis of the 2000 Programme for International Student Assessment reading assessment data using this algorithm was also conducted.

Suggested Citation

  • Kazuhiro Yamaguchi & Jonathan Templin, 2022. "A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 24-54, March.
  • Handle: RePEc:spr:jclass:v:39:y:2022:i:1:d:10.1007_s00357-021-09392-7
    DOI: 10.1007/s00357-021-09392-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-021-09392-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-021-09392-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Jonathan Templin & Laine Bradshaw, 2014. "Hierarchical Diagnostic Classification Models: A Family of Models for Estimating and Testing Attribute Hierarchies," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 317-339, April.
    3. Peida Zhan & Hong Jiao & Kaiwen Man & Lijun Wang, 2019. "Using JAGS for Bayesian Cognitive Diagnosis Modeling: A Tutorial," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 473-503, August.
    4. Gongjun Xu & Zhuoran Shang, 2018. "Identifying Latent Structures in Restricted Latent Class Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1284-1295, July.
    5. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    6. Jimmy Torre & Jeffrey Douglas, 2004. "Higher-order latent trait models for cognitive diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 333-353, September.
    7. Steven Andrew Culpepper, 2019. "Estimating the Cognitive Diagnosis $$\varvec{Q}$$ Q Matrix with Expert Knowledge: Application to the Fraction-Subtraction Dataset," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 333-357, June.
    8. Papastamoulis, Panagiotis, 2016. "label.switching: An R Package for Dealing with the Label Switching Problem in MCMC Outputs," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(c01).
    9. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    10. Matthew J. Madison & Laine P. Bradshaw, 2018. "Assessing Growth in a Diagnostic Classification Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 963-990, December.
    11. Chen-Yu Hong & Yu-Wei Chang & Rung-Ching Tsai, 2016. "Estimation of Generalized DINA Model with Order Restrictions," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 460-484, October.
    12. Yinyin Chen & Steven Culpepper & Feng Liang, 2020. "A Sparse Latent Class Model for Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 121-153, March.
    13. Guanhua Fang & Jingchen Liu & Zhiliang Ying, 2019. "On the Identifiability of Diagnostic Classification Models," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 19-40, March.
    14. Chia-Yi Chiu & Jeff Douglas, 2013. "A Nonparametric Approach to Cognitive Diagnosis by Proximity to Ideal Response Patterns," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 225-250, July.
    15. Yuqi Gu & Gongjun Xu, 2019. "The Sufficient and Necessary Condition for the Identifiability and Estimability of the DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 468-483, June.
    16. Jimmy Torre, 2011. "Erratum to: The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 510-510, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazuhiro Yamaguchi, 2023. "Bayesian Analysis Methods for Two-Level Diagnosis Classification Models," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 773-809, December.
    2. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "Direct Estimation of Diagnostic Classification Model Attribute Mastery Profiles via a Collapsed Gibbs Sampling Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1390-1421, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "Direct Estimation of Diagnostic Classification Model Attribute Mastery Profiles via a Collapsed Gibbs Sampling Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1390-1421, December.
    2. Motonori Oka & Kensuke Okada, 2023. "Scalable Bayesian Approach for the Dina Q-Matrix Estimation Combining Stochastic Optimization and Variational Inference," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 302-331, March.
    3. Yinghan Chen & Ying Liu & Steven Andrew Culpepper & Yuguo Chen, 2021. "Inferring the Number of Attributes for the Exploratory DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 30-64, March.
    4. Steven Andrew Culpepper, 2023. "A Note on Weaker Conditions for Identifying Restricted Latent Class Models for Binary Responses," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 158-174, March.
    5. Chen-Wei Liu & Björn Andersson & Anders Skrondal, 2020. "A Constrained Metropolis–Hastings Robbins–Monro Algorithm for Q Matrix Estimation in DINA Models," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 322-357, June.
    6. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.
    7. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    8. Steven Andrew Culpepper, 2019. "An Exploratory Diagnostic Model for Ordinal Responses with Binary Attributes: Identifiability and Estimation," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 921-940, December.
    9. Yuqi Gu, 2023. "Generic Identifiability of the DINA Model and Blessing of Latent Dependence," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 117-131, March.
    10. Jing Ouyang & Gongjun Xu, 2022. "Identifiability of Latent Class Models with Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1343-1360, December.
    11. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference Algorithm for the Saturated Diagnostic Classification Model," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 973-995, December.
    12. Chun Wang & Jing Lu, 2021. "Learning Attribute Hierarchies From Data: Two Exploratory Approaches," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 58-84, February.
    13. Chenchen Ma & Jimmy Torre & Gongjun Xu, 2023. "Bridging Parametric and Nonparametric Methods in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 51-75, March.
    14. Xin Xu & Guanhua Fang & Jinxin Guo & Zhiliang Ying & Susu Zhang, 2024. "Diagnostic Classification Models for Testlets: Methods and Theory," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 851-876, September.
    15. Hans Friedrich Köhn & Chia-Yi Chiu, 2021. "A Unified Theory of the Completeness of Q-Matrices for the DINA Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 500-518, October.
    16. Jimmy de la Torre & Xue-Lan Qiu & Kevin Carl Santos, 2022. "An Empirical Q-Matrix Validation Method for the Polytomous G-DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 693-724, June.
    17. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference for the DINA Model," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 569-597, October.
    18. Kazuhiro Yamaguchi, 2023. "Bayesian Analysis Methods for Two-Level Diagnosis Classification Models," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 773-809, December.
    19. Chengcheng Li & Chenchen Ma & Gongjun Xu, 2022. "Learning Large Q-Matrix by Restricted Boltzmann Machines," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1010-1041, September.
    20. Yinghan Chen & Steven Andrew Culpepper & Yuguo Chen, 2023. "Bayesian Inference for an Unknown Number of Attributes in Restricted Latent Class Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 613-635, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:39:y:2022:i:1:d:10.1007_s00357-021-09392-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.