IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v44y2019i4p473-503.html
   My bibliography  Save this article

Using JAGS for Bayesian Cognitive Diagnosis Modeling: A Tutorial

Author

Listed:
  • Peida Zhan

    (Zhejiang Normal University)

  • Hong Jiao
  • Kaiwen Man

    (University of Maryland)

  • Lijun Wang

    (Zhejiang Normal University)

Abstract

In this article, we systematically introduce the just another Gibbs sampler (JAGS) software program to fit common Bayesian cognitive diagnosis models (CDMs) including the deterministic inputs, noisy “and†gate model; the deterministic inputs, noisy “or†gate model; the linear logistic model; the reduced reparameterized unified model; and the log-linear CDM (LCDM). Further, we introduce the unstructured latent structural model and the higher order latent structural model. We also show how to extend these models to consider polytomous attributes, the testlet effect, and longitudinal diagnosis. Finally, we present an empirical example as a tutorial to illustrate how to use JAGS codes in R.

Suggested Citation

  • Peida Zhan & Hong Jiao & Kaiwen Man & Lijun Wang, 2019. "Using JAGS for Bayesian Cognitive Diagnosis Modeling: A Tutorial," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 473-503, August.
  • Handle: RePEc:sae:jedbes:v:44:y:2019:i:4:p:473-503
    DOI: 10.3102/1076998619826040
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998619826040
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998619826040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laine Bradshaw & Jonathan Templin, 2014. "Combining Item Response Theory and Diagnostic Classification Models: A Psychometric Model for Scaling Ability and Diagnosing Misconceptions," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 403-425, July.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    4. Jimmy Torre & Jeffrey Douglas, 2004. "Higher-order latent trait models for cognitive diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 333-353, September.
    5. Hans-Friedrich Köhn & Chia-Yi Chiu, 2016. "A Proof of the Duality of the DINA Model and the DINO Model," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 171-184, July.
    6. Curtis, S. McKay, 2010. "BUGS Code for Item Response Theory," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(c01).
    7. Martin, Andrew D. & Quinn, Kevin M. & Park, Jong Hee, 2011. "MCMCpack: Markov Chain Monte Carlo in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i09).
    8. E. Maris, 1999. "Estimating multiple classification latent class models," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 187-212, June.
    9. Jimmy Torre, 2011. "Erratum to: The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 510-510, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yaohui & Zhan, Peida & Fu, Yanbin & Chen, Qipeng & Man, Kaiwen & Luo, Yikun, 2023. "Using a multi-strategy eye-tracking psychometric model to measure intelligence and identify cognitive strategy in Raven's advanced progressive matrices," Intelligence, Elsevier, vol. 100(C).
    2. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "Direct Estimation of Diagnostic Classification Model Attribute Mastery Profiles via a Collapsed Gibbs Sampling Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1390-1421, December.
    3. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 24-54, March.
    4. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference Algorithm for the Saturated Diagnostic Classification Model," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 973-995, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference for the DINA Model," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 569-597, October.
    2. Peida Zhan & Wen-Chung Wang & Xiaomin Li, 2020. "A Partial Mastery, Higher-Order Latent Structural Model for Polytomous Attributes in Cognitive Diagnostic Assessments," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 328-351, July.
    3. Xin Xu & Guanhua Fang & Jinxin Guo & Zhiliang Ying & Susu Zhang, 2024. "Diagnostic Classification Models for Testlets: Methods and Theory," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 851-876, September.
    4. Chia-Yi Chiu & Hans-Friedrich Köhn, 2019. "Consistency Theory for the General Nonparametric Classification Method," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 830-845, September.
    5. Hans Friedrich Köhn & Chia-Yi Chiu, 2021. "A Unified Theory of the Completeness of Q-Matrices for the DINA Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 500-518, October.
    6. Xuliang Gao & Wenchao Ma & Daxun Wang & Yan Cai & Dongbo Tu, 2021. "A Class of Cognitive Diagnosis Models for Polytomous Data," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 297-322, June.
    7. Jimmy de la Torre & Xue-Lan Qiu & Kevin Carl Santos, 2022. "An Empirical Q-Matrix Validation Method for the Polytomous G-DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 693-724, June.
    8. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "Direct Estimation of Diagnostic Classification Model Attribute Mastery Profiles via a Collapsed Gibbs Sampling Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1390-1421, December.
    9. Jürgen Heller & Luca Stefanutti & Pasquale Anselmi & Egidio Robusto, 2015. "On the Link between Cognitive Diagnostic Models and Knowledge Space Theory," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 995-1019, December.
    10. Mona Tabatabaee-Yazdi, 2020. "Hierarchical Diagnostic Classification Modeling of Reading Comprehension," SAGE Open, , vol. 10(2), pages 21582440209, June.
    11. Steven Andrew Culpepper, 2019. "Estimating the Cognitive Diagnosis $$\varvec{Q}$$ Q Matrix with Expert Knowledge: Application to the Fraction-Subtraction Dataset," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 333-357, June.
    12. Peida Zhan & Xin Qiao, 2022. "DIAGNOSTIC Classification Analysis of Problem-Solving Competence using Process Data: An Item Expansion Method," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1529-1547, December.
    13. Steven Andrew Culpepper, 2023. "A Note on Weaker Conditions for Identifying Restricted Latent Class Models for Binary Responses," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 158-174, March.
    14. Chun Wang, 2024. "A Diagnostic Facet Status Model (DFSM) for Extracting Instructionally Useful Information from Diagnostic Assessment," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 747-773, September.
    15. Yinghan Chen & Steven Andrew Culpepper & Yuguo Chen, 2023. "Bayesian Inference for an Unknown Number of Attributes in Restricted Latent Class Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 613-635, June.
    16. Yinyin Chen & Steven Culpepper & Feng Liang, 2020. "A Sparse Latent Class Model for Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 121-153, March.
    17. Matthew S. Johnson & Sandip Sinharay, 2020. "The Reliability of the Posterior Probability of Skill Attainment in Diagnostic Classification Models," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 5-31, February.
    18. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.
    19. Laine Bradshaw & Jonathan Templin, 2014. "Combining Item Response Theory and Diagnostic Classification Models: A Psychometric Model for Scaling Ability and Diagnosing Misconceptions," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 403-425, July.
    20. Peida Zhan & Hong Jiao & Dandan Liao & Feiming Li, 2019. "A Longitudinal Higher-Order Diagnostic Classification Model," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 251-281, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:44:y:2019:i:4:p:473-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.