IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v84y2019i2d10.1007_s11336-018-9619-8.html
   My bibliography  Save this article

The Sufficient and Necessary Condition for the Identifiability and Estimability of the DINA Model

Author

Listed:
  • Yuqi Gu

    (University of Michigan)

  • Gongjun Xu

    (University of Michigan)

Abstract

Cognitive diagnosis models (CDMs) are useful statistical tools in cognitive diagnosis assessment. However, as many other latent variable models, the CDMs often suffer from the non-identifiability issue. This work gives the sufficient and necessary condition for identifiability of the basic DINA model, which not only addresses the open problem in Xu and Zhang (Psychometrika 81:625–649, 2016) on the minimal requirement for identifiability, but also sheds light on the study of more general CDMs, which often cover DINA as a submodel. Moreover, we show the identifiability condition ensures the consistent estimation of the model parameters. From a practical perspective, the identifiability condition only depends on the Q-matrix structure and is easy to verify, which would provide a guideline for designing statistically valid and estimable cognitive diagnosis tests.

Suggested Citation

  • Yuqi Gu & Gongjun Xu, 2019. "The Sufficient and Necessary Condition for the Identifiability and Estimability of the DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 468-483, June.
  • Handle: RePEc:spr:psycho:v:84:y:2019:i:2:d:10.1007_s11336-018-9619-8
    DOI: 10.1007/s11336-018-9619-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-018-9619-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-018-9619-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chia-Yi Chiu & Jeffrey Douglas & Xiaodong Li, 2009. "Cluster Analysis for Cognitive Diagnosis: Theory and Applications," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 633-665, December.
    2. Gabrielsen, Arne, 1978. "Consistency and identifiability," Journal of Econometrics, Elsevier, vol. 8(2), pages 261-263, October.
    3. Yunxiao Chen & Jingchen Liu & Gongjun Xu & Zhiliang Ying, 2015. "Statistical Analysis of Q -Matrix Based Diagnostic Classification Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 850-866, June.
    4. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    5. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    6. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    7. Shiyu Wang & Jeff Douglas, 2015. "Consistency of Nonparametric Classification in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 85-100, March.
    8. Chen, Yunxiao & Liu, Jingchen & Xu, Gongjun & Ying, Zhiliang, 2015. "Statistical analysis of Q-matrix based diagnostic classification models," LSE Research Online Documents on Economics 103183, London School of Economics and Political Science, LSE Library.
    9. Richard McHugh, 1956. "Efficient estimation and local identification in latent class analysis," Psychometrika, Springer;The Psychometric Society, vol. 21(4), pages 331-347, December.
    10. Jimmy Torre, 2011. "Erratum to: The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 510-510, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqi Gu, 2023. "Generic Identifiability of the DINA Model and Blessing of Latent Dependence," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 117-131, March.
    2. Hans Friedrich Köhn & Chia-Yi Chiu, 2021. "A Unified Theory of the Completeness of Q-Matrices for the DINA Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 500-518, October.
    3. Jing Ouyang & Gongjun Xu, 2022. "Identifiability of Latent Class Models with Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1343-1360, December.
    4. Yinghan Chen & Ying Liu & Steven Andrew Culpepper & Yuguo Chen, 2021. "Inferring the Number of Attributes for the Exploratory DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 30-64, March.
    5. David Arthur & Hua-Hua Chang, 2024. "DINA-BAG: A Bagging Algorithm for DINA Model Parameter Estimation in Small Samples," Journal of Educational and Behavioral Statistics, , vol. 49(3), pages 342-367, June.
    6. Zhenke Wu & Livia Casciola‐Rosen & Antony Rosen & Scott L. Zeger, 2021. "A Bayesian approach to restricted latent class models for scientifically structured clustering of multivariate binary outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1431-1444, December.
    7. Chengcheng Li & Chenchen Ma & Gongjun Xu, 2022. "Learning Large Q-Matrix by Restricted Boltzmann Machines," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1010-1041, September.
    8. Chia-Yi Chiu & Hans Friedrich Köhn & Wenchao Ma, 2023. "Commentary on “Extending the Basic Local Independence Model to Polytomous Data” by Stefanutti, de Chiusole, Anselmi, and Spoto," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 656-671, June.
    9. Steven Andrew Culpepper, 2023. "A Note on Weaker Conditions for Identifying Restricted Latent Class Models for Binary Responses," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 158-174, March.
    10. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    11. Motonori Oka & Kensuke Okada, 2023. "Scalable Bayesian Approach for the Dina Q-Matrix Estimation Combining Stochastic Optimization and Variational Inference," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 302-331, March.
    12. Chen-Wei Liu & Björn Andersson & Anders Skrondal, 2020. "A Constrained Metropolis–Hastings Robbins–Monro Algorithm for Q Matrix Estimation in DINA Models," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 322-357, June.
    13. Chun Wang & Jing Lu, 2021. "Learning Attribute Hierarchies From Data: Two Exploratory Approaches," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 58-84, February.
    14. Xin Xu & Guanhua Fang & Jinxin Guo & Zhiliang Ying & Susu Zhang, 2024. "Diagnostic Classification Models for Testlets: Methods and Theory," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 851-876, September.
    15. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 24-54, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenchen Ma & Jimmy Torre & Gongjun Xu, 2023. "Bridging Parametric and Nonparametric Methods in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 51-75, March.
    2. Xin Xu & Guanhua Fang & Jinxin Guo & Zhiliang Ying & Susu Zhang, 2024. "Diagnostic Classification Models for Testlets: Methods and Theory," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 851-876, September.
    3. Hans Friedrich Köhn & Chia-Yi Chiu, 2021. "A Unified Theory of the Completeness of Q-Matrices for the DINA Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 500-518, October.
    4. Motonori Oka & Kensuke Okada, 2023. "Scalable Bayesian Approach for the Dina Q-Matrix Estimation Combining Stochastic Optimization and Variational Inference," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 302-331, March.
    5. Ying Liu & Steven Andrew Culpepper & Yuguo Chen, 2023. "Identifiability of Hidden Markov Models for Learning Trajectories in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 361-386, June.
    6. Jing Ouyang & Gongjun Xu, 2022. "Identifiability of Latent Class Models with Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1343-1360, December.
    7. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.
    8. Peida Zhan & Wen-Chung Wang & Xiaomin Li, 2020. "A Partial Mastery, Higher-Order Latent Structural Model for Polytomous Attributes in Cognitive Diagnostic Assessments," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 328-351, July.
    9. Chun Wang & Jing Lu, 2021. "Learning Attribute Hierarchies From Data: Two Exploratory Approaches," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 58-84, February.
    10. Steven Andrew Culpepper, 2023. "A Note on Weaker Conditions for Identifying Restricted Latent Class Models for Binary Responses," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 158-174, March.
    11. Yinyin Chen & Steven Culpepper & Feng Liang, 2020. "A Sparse Latent Class Model for Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 121-153, March.
    12. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    13. Chen-Wei Liu & Björn Andersson & Anders Skrondal, 2020. "A Constrained Metropolis–Hastings Robbins–Monro Algorithm for Q Matrix Estimation in DINA Models," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 322-357, June.
    14. Jimmy de la Torre & Xue-Lan Qiu & Kevin Carl Santos, 2022. "An Empirical Q-Matrix Validation Method for the Polytomous G-DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 693-724, June.
    15. Youn Seon Lim & Fritz Drasgow, 2019. "Conditional Independence and Dimensionality of Cognitive Diagnostic Models: a Test for Model Fit," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 295-305, July.
    16. Pablo Nájera & Francisco J. Abad & Chia-Yi Chiu & Miguel A. Sorrel, 2023. "The Restricted DINA Model: A Comprehensive Cognitive Diagnostic Model for Classroom-Level Assessments," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 719-749, December.
    17. Chia-Yi Chiu & Yuan-Pei Chang, 2021. "Advances in CD-CAT: The General Nonparametric Item Selection Method," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 1039-1057, December.
    18. Yuqi Gu & Jingchen Liu & Gongjun Xu & Zhiliang Ying, 2018. "Hypothesis Testing of the Q-matrix," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 515-537, September.
    19. Steven Andrew Culpepper, 2019. "Estimating the Cognitive Diagnosis $$\varvec{Q}$$ Q Matrix with Expert Knowledge: Application to the Fraction-Subtraction Dataset," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 333-357, June.
    20. Chengcheng Li & Chenchen Ma & Gongjun Xu, 2022. "Learning Large Q-Matrix by Restricted Boltzmann Machines," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1010-1041, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:84:y:2019:i:2:d:10.1007_s11336-018-9619-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.