IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v89y2024i3d10.1007_s11336-024-09962-9.html
   My bibliography  Save this article

Diagnostic Classification Models for Testlets: Methods and Theory

Author

Listed:
  • Xin Xu

    (Beijing Normal University)

  • Guanhua Fang

    (Fudan University)

  • Jinxin Guo

    (Minzu University of China)

  • Zhiliang Ying

    (Columbia University)

  • Susu Zhang

    (University of Illinois Urbana-Champaign)

Abstract

Diagnostic classification models (DCMs) have seen wide applications in educational and psychological measurement, especially in formative assessment. DCMs in the presence of testlets have been studied in recent literature. A key ingredient in the statistical modeling and analysis of testlet-based DCMs is the superposition of two latent structures, the attribute profile and the testlet effect. This paper extends the standard testlet DINA (T-DINA) model to accommodate the potential correlation between the two latent structures. Model identifiability is studied and a set of sufficient conditions are proposed. As a byproduct, the identifiability of the standard T-DINA is also established. The proposed model is applied to a dataset from the 2015 Programme for International Student Assessment. Comparisons are made with DINA and T-DINA, showing that there is substantial improvement in terms of the goodness of fit. Simulations are conducted to assess the performance of the new method under various settings.

Suggested Citation

  • Xin Xu & Guanhua Fang & Jinxin Guo & Zhiliang Ying & Susu Zhang, 2024. "Diagnostic Classification Models for Testlets: Methods and Theory," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 851-876, September.
  • Handle: RePEc:spr:psycho:v:89:y:2024:i:3:d:10.1007_s11336-024-09962-9
    DOI: 10.1007/s11336-024-09962-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-024-09962-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-024-09962-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:89:y:2024:i:3:d:10.1007_s11336-024-09962-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.