IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v88y2023i1d10.1007_s11336-022-09867-5.html
   My bibliography  Save this article

Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models

Author

Listed:
  • Chenchen Ma

    (University of Michigan)

  • Jing Ouyang

    (University of Michigan)

  • Gongjun Xu

    (University of Michigan)

Abstract

Cognitive Diagnosis Models (CDMs) are a special family of discrete latent variable models that are widely used in educational and psychological measurement. A key component of CDMs is the Q-matrix characterizing the dependence structure between the items and the latent attributes. Additionally, researchers also assume in many applications certain hierarchical structures among the latent attributes to characterize their dependence. In most CDM applications, the attribute–attribute hierarchical structures, the item-attribute Q-matrix, the item-level diagnostic models, as well as the number of latent attributes, need to be fully or partially pre-specified, which however may be subjective and misspecified as noted by many recent studies. This paper considers the problem of jointly learning these latent and hierarchical structures in CDMs from observed data with minimal model assumptions. Specifically, a penalized likelihood approach is proposed to select the number of attributes and estimate the latent and hierarchical structures simultaneously. An expectation-maximization (EM) algorithm is developed for efficient computation, and statistical consistency theory is also established under mild conditions. The good performance of the proposed method is illustrated by simulation studies and real data applications in educational assessment.

Suggested Citation

  • Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
  • Handle: RePEc:spr:psycho:v:88:y:2023:i:1:d:10.1007_s11336-022-09867-5
    DOI: 10.1007/s11336-022-09867-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-022-09867-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-022-09867-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    2. Jonathan Templin & Laine Bradshaw, 2014. "Hierarchical Diagnostic Classification Models: A Family of Models for Estimating and Testing Attribute Hierarchies," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 317-339, April.
    3. Matthias Davier & Shelby Haberman, 2014. "Hierarchical Diagnostic Classification Models Morphing into Unidimensional ‘Diagnostic’ Classification Models—A Commentary," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 340-346, April.
    4. Gongjun Xu & Zhuoran Shang, 2018. "Identifying Latent Structures in Restricted Latent Class Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1284-1295, July.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Chun Wang & Jing Lu, 2021. "Learning Attribute Hierarchies From Data: Two Exploratory Approaches," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 58-84, February.
    7. Chengcheng Li & Chenchen Ma & Gongjun Xu, 2022. "Learning Large Q-Matrix by Restricted Boltzmann Machines," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1010-1041, September.
    8. Zhenke Wu & Maria Deloria-Knoll & Laura L. Hammitt & Scott L. Zeger, 2016. "Partially latent class models for case–control studies of childhood pneumonia aetiology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(1), pages 97-114, January.
    9. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2017. "Regularized Latent Class Analysis with Application in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 660-692, September.
    10. Steven Andrew Culpepper, 2019. "Estimating the Cognitive Diagnosis $$\varvec{Q}$$ Q Matrix with Expert Knowledge: Application to the Fraction-Subtraction Dataset," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 333-357, June.
    11. Yunxiao Chen & Jingchen Liu & Gongjun Xu & Zhiliang Ying, 2015. "Statistical Analysis of Q -Matrix Based Diagnostic Classification Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 850-866, June.
    12. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    13. Chen, Yunxiao & Liu, Jingchen & Xu, Gongjun & Ying, Zhiliang, 2015. "Statistical analysis of Q-matrix based diagnostic classification models," LSE Research Online Documents on Economics 103183, London School of Economics and Political Science, LSE Library.
    14. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    15. Yuqi Gu & Gongjun Xu, 2019. "The Sufficient and Necessary Condition for the Identifiability and Estimability of the DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 468-483, June.
    16. Xiaotong Shen & Wei Pan & Yunzhang Zhu, 2012. "Likelihood-Based Selection and Sharp Parameter Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 223-232, March.
    17. Jimmy Torre, 2011. "Erratum to: The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 510-510, July.
    18. S. L. Wang & L. Z. Liao, 2001. "Decomposition Method with a Variable Parameter for a Class of Monotone Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 109(2), pages 415-429, May.
    19. Chen, Yunxiao & Li, Xiaoou & Liu, Jingchen & Ying, Zhiliang, 2017. "Regularized latent class analysis with application in cognitive diagnosis," LSE Research Online Documents on Economics 103182, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun Wang & Jing Lu, 2021. "Learning Attribute Hierarchies From Data: Two Exploratory Approaches," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 58-84, February.
    2. Juntao Wang & Yuan Li, 2023. "DINA Model with Entropy Penalization," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    3. Motonori Oka & Kensuke Okada, 2023. "Scalable Bayesian Approach for the Dina Q-Matrix Estimation Combining Stochastic Optimization and Variational Inference," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 302-331, March.
    4. Chengcheng Li & Chenchen Ma & Gongjun Xu, 2022. "Learning Large Q-Matrix by Restricted Boltzmann Machines," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1010-1041, September.
    5. Chen-Wei Liu & Björn Andersson & Anders Skrondal, 2020. "A Constrained Metropolis–Hastings Robbins–Monro Algorithm for Q Matrix Estimation in DINA Models," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 322-357, June.
    6. Chenchen Ma & Jimmy Torre & Gongjun Xu, 2023. "Bridging Parametric and Nonparametric Methods in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 51-75, March.
    7. Yinghan Chen & Ying Liu & Steven Andrew Culpepper & Yuguo Chen, 2021. "Inferring the Number of Attributes for the Exploratory DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 30-64, March.
    8. Steven Andrew Culpepper, 2023. "A Note on Weaker Conditions for Identifying Restricted Latent Class Models for Binary Responses," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 158-174, March.
    9. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.
    10. Hans Friedrich Köhn & Chia-Yi Chiu, 2021. "A Unified Theory of the Completeness of Q-Matrices for the DINA Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 500-518, October.
    11. Jimmy de la Torre & Xue-Lan Qiu & Kevin Carl Santos, 2022. "An Empirical Q-Matrix Validation Method for the Polytomous G-DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 693-724, June.
    12. Jing Ouyang & Gongjun Xu, 2022. "Identifiability of Latent Class Models with Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1343-1360, December.
    13. Yinghan Chen & Shiyu Wang, 2023. "Bayesian Estimation of Attribute Hierarchy for Cognitive Diagnosis Models," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 810-841, December.
    14. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 24-54, March.
    15. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2017. "Regularized Latent Class Analysis with Application in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 660-692, September.
    16. Peida Zhan & Wen-Chung Wang & Xiaomin Li, 2020. "A Partial Mastery, Higher-Order Latent Structural Model for Polytomous Attributes in Cognitive Diagnostic Assessments," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 328-351, July.
    17. Steven Andrew Culpepper, 2019. "An Exploratory Diagnostic Model for Ordinal Responses with Binary Attributes: Identifiability and Estimation," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 921-940, December.
    18. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "Direct Estimation of Diagnostic Classification Model Attribute Mastery Profiles via a Collapsed Gibbs Sampling Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1390-1421, December.
    19. Yinghan Chen & Steven Andrew Culpepper & Yuguo Chen, 2023. "Bayesian Inference for an Unknown Number of Attributes in Restricted Latent Class Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 613-635, June.
    20. Yinyin Chen & Steven Culpepper & Feng Liang, 2020. "A Sparse Latent Class Model for Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 121-153, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:88:y:2023:i:1:d:10.1007_s11336-022-09867-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.