IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v89y2024i4d10.1007_s11336-024-09983-4.html
   My bibliography  Save this article

New Paradigm of Identifiable General-response Cognitive Diagnostic Models: Beyond Categorical Data

Author

Listed:
  • Seunghyun Lee

    (COLUMBIA UNIVERSITY)

  • Yuqi Gu

    (Columbia University)

Abstract

Cognitive diagnostic models (CDMs) are a popular family of discrete latent variable models that model students’ mastery or deficiency of multiple fine-grained skills. CDMs have been most widely used to model categorical item response data such as binary or polytomous responses. With advances in technology and the emergence of varying test formats in modern educational assessments, new response types, including continuous responses such as response times, and count-valued responses from tests with repetitive tasks or eye-tracking sensors, have also become available. Variants of CDMs have been proposed recently for modeling such responses. However, whether these extended CDMs are identifiable and estimable is entirely unknown. We propose a very general cognitive diagnostic modeling framework for arbitrary types of multivariate responses with minimal assumptions, and establish identifiability in this general setting. Surprisingly, we prove that our general-response CDMs are identifiable under $${\textbf{Q}}$$ Q -matrix-based conditions similar to those for traditional categorical-response CDMs. Our conclusions set up a new paradigm of identifiable general-response CDMs. We propose an EM algorithm to efficiently estimate a broad class of exponential family-based general-response CDMs. We conduct simulation studies under various response types. The simulation results not only corroborate our identifiability theory, but also demonstrate the superior empirical performance of our estimation algorithms. We illustrate our methodology by applying it to a TIMSS 2019 response time dataset.

Suggested Citation

  • Seunghyun Lee & Yuqi Gu, 2024. "New Paradigm of Identifiable General-response Cognitive Diagnostic Models: Beyond Categorical Data," Psychometrika, Springer;The Psychometric Society, vol. 89(4), pages 1304-1336, December.
  • Handle: RePEc:spr:psycho:v:89:y:2024:i:4:d:10.1007_s11336-024-09983-4
    DOI: 10.1007/s11336-024-09983-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-024-09983-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-024-09983-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:89:y:2024:i:4:d:10.1007_s11336-024-09983-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.