IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i2d10.1007_s13198-021-01367-6.html
   My bibliography  Save this article

Order diminution and its application in controller design using salp swarm optimization technique

Author

Listed:
  • Nafees Ahamad

    (DIT University)

  • Afzal Sikander

    (Dr. B. R. Ambedkar National Institute of Technology Jalandhar)

  • Gagan Singh

    (DIT University)

Abstract

Order diminution (OD) or model order reduction (MOR), a very important field of System Engineering, has been explored by many researchers. Different methods are available for reducing the complexity of a control system, which are subsequently utilized to get a cost-effective controller. Model order reduction is done by either using classical methods or by using optimization techniques. In optimization algorithms, accuracy, complexity, and convergent rate are the main criteria for comparison in OD. This paper contributes a novel fast and more accurate OD (MOR) technique based on Salp Swarm Optimization. Further, the proposed method is applied to a time-delay system in four different manners. The effectiveness of the proposed technique is shown by reducing four benchmark systems, including a system with time delay and an 84th order system. Finally, the application of OD is shown by designing a reduced-based H-infinity controller for the 84th order system which results in a great saving of time ( $$\approx 96\%$$ ≈ 96 % ). The obtained results are comparable or better than those from the existing well-known order reduction techniques available in the literature.

Suggested Citation

  • Nafees Ahamad & Afzal Sikander & Gagan Singh, 2022. "Order diminution and its application in controller design using salp swarm optimization technique," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 933-943, April.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:2:d:10.1007_s13198-021-01367-6
    DOI: 10.1007/s13198-021-01367-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01367-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01367-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garg, Harish, 2016. "A hybrid PSO-GA algorithm for constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 292-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javaid Ali & Muhammad Saeed & Muhammad Farhan Tabassam & Shaukat Iqbal, 2019. "Controlled showering optimization algorithm: an intelligent tool for decision making in global optimization," Computational and Mathematical Organization Theory, Springer, vol. 25(2), pages 132-164, June.
    2. Huimin Fu & Ming Shi & Miaomiao Feng, 2023. "Capacity optimization strategy for energy storage system to ensure power supply," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 622-627.
    3. Chun-Yao Lee & Guang-Lin Zhuo, 2021. "A Hybrid Whale Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 9(13), pages 1-19, June.
    4. Mona A. S. Ali & Fathimathul Rajeena P. P. & Diaa Salama Abd Elminaam, 2022. "A Feature Selection Based on Improved Artificial Hummingbird Algorithm Using Random Opposition-Based Learning for Solving Waste Classification Problem," Mathematics, MDPI, vol. 10(15), pages 1-34, July.
    5. Adane Abebaw Gessesse & Rajashree Mishra & Mitali Madhumita Acharya & Kedar Nath Das, 2020. "Genetic algorithm based fuzzy programming approach for multi-objective linear fractional stochastic transportation problem involving four-parameter Burr distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 93-109, February.
    6. Yassin Belkourchia & Mohamed Zeriab Es-Sadek & Lahcen Azrar, 2023. "New Hybrid Perturbed Projected Gradient and Simulated Annealing Algorithms for Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 438-475, May.
    7. Fazli Wahid & Rozaida Ghazali & Lokman Hakim Ismail & Ali M. Algarwi Aseere, 2023. "An Optimal Neural Network for Hourly and Daily Energy Consumption Prediction in Buildings," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 14(1), pages 1-13, January.
    8. Umesh Balande & Deepti Shrimankar, 2020. "An oracle penalty and modified augmented Lagrangian methods with firefly algorithm for constrained optimization problems," Operational Research, Springer, vol. 20(2), pages 985-1010, June.
    9. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    10. Malika Fodil & Ali Djerioui & Mohamed Ladjal & Abdelhakim Saim & Fouad Berrabah & Hemza Mekki & Samir Zeghlache & Azeddine Houari & Mohamed Fouad Benkhoris, 2023. "Optimization of PI Controller Parameters by GWO Algorithm for Five-Phase Asynchronous Motor," Energies, MDPI, vol. 16(10), pages 1-14, May.
    11. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    12. Brayan A. Atoccsa & David W. Puma & Daygord Mendoza & Estefany Urday & Cristhian Ronceros & Modesto T. Palma, 2024. "Optimization of Ampacity in High-Voltage Underground Cables with Thermal Backfill Using Dynamic PSO and Adaptive Strategies," Energies, MDPI, vol. 17(5), pages 1-19, February.
    13. Luo, Qifang & Yang, Xiao & Zhou, Yongquan, 2019. "Nature-inspired approach: An enhanced moth swarm algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 57-92.
    14. Wei-Guo Zhang & Zhe Li & Yong-Jun Liu & Yue Zhang, 2021. "Pricing European Option Under Fuzzy Mixed Fractional Brownian Motion Model with Jumps," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 483-515, August.
    15. Xi Chen & Yukuan Dong & Xiaoshi Wang & Qiushi Wang, 2024. "Optimization of an Urban Microgreen Space Distribution Based on the PS-ACO Algorithm: A Case Study of Shenyang, China," Land, MDPI, vol. 13(10), pages 1-22, September.
    16. Xiang, Shihu & Yang, Jun, 2023. "A novel adaptive deployment method for the single-target tracking of mobile wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    17. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.
    18. Máximo Méndez & Mariano Frutos & Fabio Miguel & Ricardo Aguasca-Colomo, 2020. "TOPSIS Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    19. Reyhaneh Akbari & Masoud-Reza Hessami-Kermani & Saeed Shojaee, 2020. "Flood Routing: Improving Outflow Using a New Non-linear Muskingum Model with Four Variable Parameters Coupled with PSO-GA Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3291-3316, August.
    20. Aqsa Naeem & Naveed Ul Hassan & Chau Yuen & S. M. Muyeen, 2019. "Maximizing the Economic Benefits of a Grid-Tied Microgrid Using Solar-Wind Complementarity," Energies, MDPI, vol. 12(3), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:2:d:10.1007_s13198-021-01367-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.