IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v306y2024ics0360544224022369.html
   My bibliography  Save this article

Optimal active and reactive energy management for a smart microgrid system under the Moroccan grid pricing code

Author

Listed:
  • Gheouany, Saad
  • Ouadi, Hamid
  • El Bakali, Saida

Abstract

This article presents an innovative active and reactive energy management system (AR-EMS) specifically designed for residential buildings in Morocco, seamlessly integrated with a Smart Microgrid (SMG) and the Electrical Power Grid (EPG) supplier. The considered SMG incorporates a Photovoltaic system (PV) and an Energy Storage System (ESS). In Morocco, the EPG utilizes a Range Tariff System (RTS), where the tariff structure depends on the total energy consumed at the end of each month. Hence, the proposed AR-EMS is designed to computes optimal active and reactive power setpoints of each source at 15-minute intervals for the next 30 days, based on forecasts of energy consumption and PV power production. The AR-EMS consists of two distinct layers: the Long-Term Optimization Layer (LTOL) and the Short-Term Optimization Layer (STOL). The LTOL focuses on optimizing active and reactive power flow over an extended time horizon of 30 days, relying on forecasted data. In contrast, the STOL involves short-term forecasting and energy optimization over the next 24-hour horizon, addressing the LTOL forecasting uncertainties. The proposed strategy emphasizes a multi-objective problem aiming at minimizing both active and reactive energy bill, ESS degradation cost, Peak-to-Average Ratio (PAR) and carbon emissions. The considered problem is solved using a metaheuristic algorithm, specifically the Lexicographic approach within the Particle Swarm Optimization (PSO) method. To validate the effectiveness of the proposed approach, two comparative analyses are conducted. The first involves the impact of time horizons on the energy cost and the management performances within the Moroccan context. The second comparison, highlights the benefits and shortfalls of using simultaneous active and reactive power management, comparing it with a system exclusively managing active power (A-EMS). Both compared strategies are evaluated using the Moroccan tariff RTS and real world data. The comparative analysis highlights the advantages of the proposed AR-EMS, demonstrating benefits in terms of active and reactive energy bill reduction by 58.9% and 83.2%, respectively, and showcases a 49.3% reduction in carbon emissions while improving the EPG power factor by 6% compared to A-EMS, In conclusion, the optimization results are encouraging the Moroccan government to further develop the installation of SMGs.

Suggested Citation

  • Gheouany, Saad & Ouadi, Hamid & El Bakali, Saida, 2024. "Optimal active and reactive energy management for a smart microgrid system under the Moroccan grid pricing code," Energy, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022369
    DOI: 10.1016/j.energy.2024.132462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224022369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Xu & Sun, Yuanzhang & Yang, Jun & Dou, Zhenlan & Li, Gaojunjie & Xu, Chengying & Wen, Yuxin, 2022. "Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses," Energy, Elsevier, vol. 251(C).
    2. Guo, Tianyu & Guo, Qi & Huang, Libin & Guo, Haiping & Lu, Yuanhong & Tu, Liang, 2023. "Microgrid source-network-load-storage master-slave game optimization method considering the energy storage overcharge/overdischarge risk," Energy, Elsevier, vol. 282(C).
    3. Jiang, Tao & Dong, Xinru & Zhang, Rufeng & Li, Xue, 2023. "Strategic active and reactive power scheduling of integrated community energy systems in day-ahead distribution electricity market," Applied Energy, Elsevier, vol. 336(C).
    4. Chaduvula, Hemanth & Das, Debapriya, 2023. "Analysis of microgrid configuration with optimal power injection from grid using point estimate method embedded fuzzy-particle swarm optimization," Energy, Elsevier, vol. 282(C).
    5. Alharbi, Abdullah G. & Olabi, A.G. & Rezk, Hegazy & Fathy, Ahmed & Abdelkareem, Mohammad Ali, 2024. "Optimized energy management and control strategy of photovoltaic/PEM fuel cell/batteries/supercapacitors DC microgrid system," Energy, Elsevier, vol. 290(C).
    6. Elkazaz, Mahmoud & Sumner, Mark & Naghiyev, Eldar & Pholboon, Seksak & Davies, Richard & Thomas, David, 2020. "A hierarchical two-stage energy management for a home microgrid using model predictive and real-time controllers," Applied Energy, Elsevier, vol. 269(C).
    7. Carvalho, Diego B. & Bortoni, Edson da C., 2024. "Proposed model with weighted parameters for microgrid management: Incorporating diverse load profiles, assorted tariff policies, and energy storage devices," Energy, Elsevier, vol. 296(C).
    8. Bian, Yifan & Xie, Lirong & Ye, Jiahao & Ma, Lan & Cui, Chuanshi, 2024. "Peer-to-peer energy sharing model considering multi-objective optimal allocation of shared energy storage in a multi-microgrid system," Energy, Elsevier, vol. 288(C).
    9. Hasanien, Hany M. & Alsaleh, Ibrahim & Tostado-Véliz, Marcos & Zhang, Miao & Alateeq, Ayoob & Jurado, Francisco & Alassaf, Abdullah, 2024. "Hybrid particle swarm and sea horse optimization algorithm-based optimal reactive power dispatch of power systems comprising electric vehicles," Energy, Elsevier, vol. 286(C).
    10. Hassaballah, E.G. & Keshta, H.E. & Abdel-Latif, K.M. & Ali, A.A., 2024. "A novel strategy for real-time optimal scheduling of grid-tied microgrid considering load management and uncertainties," Energy, Elsevier, vol. 299(C).
    11. Zheng, Siqian & Jin, Xin & Huang, Gongsheng & Lai, Alvin CK., 2022. "Coordination of commercial prosumers with distributed demand-side flexibility in energy sharing and management system," Energy, Elsevier, vol. 248(C).
    12. Suryakiran, B.V. & Nizami, Sohrab & Verma, Ashu & Saha, Tapan Kumar & Mishra, Sukumar, 2023. "A DSO-based day-ahead market mechanism for optimal operational planning of active distribution network," Energy, Elsevier, vol. 282(C).
    13. Kassab, Fadi Agha & Celik, Berk & Locment, Fabrice & Sechilariu, Manuela & Liaquat, Sheroze & Hansen, Timothy M., 2024. "Optimal sizing and energy management of a microgrid: A joint MILP approach for minimization of energy cost and carbon emission," Renewable Energy, Elsevier, vol. 224(C).
    14. Garg, Harish, 2016. "A hybrid PSO-GA algorithm for constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 292-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chunling & Liu, Chunming & Zhou, Xiulin & Zhang, Gaoyuan, 2024. "Flexibility-based expansion planning of active distribution networks considering optimal operation of multi-community integrated energy systems," Energy, Elsevier, vol. 307(C).
    2. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    3. Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).
    4. Sima, Catalina Alexandra & Popescu, Claudia Laurenta & Popescu, Mihai Octavian & Roscia, Mariacristina & Seritan, George & Panait, Cornel, 2022. "Techno-economic assessment of university energy communities with on/off microgrid," Renewable Energy, Elsevier, vol. 193(C), pages 538-553.
    5. Adil, Muhammad & Mahmud, M.A. Parvez & Kouzani, Abbas Z. & Khoo, Sui Yang, 2024. "Three-stage energy trading framework for retailers, charging stations, and electric vehicles: A game-theoretic approach," Energy, Elsevier, vol. 301(C).
    6. Zhang, Zhenwei & Wang, Chengfu & Wu, Qiuwei & Dong, Xiaoming, 2024. "Optimal dispatch for cross-regional integrated energy system with renewable energy uncertainties: A unified spatial-temporal cooperative framework," Energy, Elsevier, vol. 292(C).
    7. Armioun, Majid & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Siano, Pierluigi, 2023. "Optimal scheduling of CCHP-based resilient energy distribution system considering active microgrids' multi-carrier energy transactions," Applied Energy, Elsevier, vol. 350(C).
    8. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    9. Yassin Belkourchia & Mohamed Zeriab Es-Sadek & Lahcen Azrar, 2023. "New Hybrid Perturbed Projected Gradient and Simulated Annealing Algorithms for Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 438-475, May.
    10. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    11. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    12. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    13. Brayan A. Atoccsa & David W. Puma & Daygord Mendoza & Estefany Urday & Cristhian Ronceros & Modesto T. Palma, 2024. "Optimization of Ampacity in High-Voltage Underground Cables with Thermal Backfill Using Dynamic PSO and Adaptive Strategies," Energies, MDPI, vol. 17(5), pages 1-19, February.
    14. Luo, Qifang & Yang, Xiao & Zhou, Yongquan, 2019. "Nature-inspired approach: An enhanced moth swarm algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 57-92.
    15. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.
    16. Máximo Méndez & Mariano Frutos & Fabio Miguel & Ricardo Aguasca-Colomo, 2020. "TOPSIS Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    17. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    18. Zhou, Yuan & Wang, Jiangjiang & Yang, Mingxu & Xu, Hangwei, 2023. "Hybrid active and passive strategies for chance-constrained bilevel scheduling of community multi-energy system considering demand-side management and consumer psychology," Applied Energy, Elsevier, vol. 349(C).
    19. Aniruddha Samanta & Kajla Basu, 2019. "Multi-objective reliability redundancy allocation problem considering two types of common cause failures," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 369-383, June.
    20. Nitin S. Solke & Pritesh Shah & Ravi Sekhar & T. P. Singh, 2022. "Machine Learning-Based Predictive Modeling and Control of Lean Manufacturing in Automotive Parts Manufacturing Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(1), pages 89-112, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.