IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v12y2021i6d10.1007_s13198-021-01171-2.html
   My bibliography  Save this article

Solving fixed-charge transportation problem using a modified particle swarm optimization algorithm

Author

Listed:
  • Gurwinder Singh

    (IKG Punjab Technical University Jalandhar)

  • Amarinder Singh

    (BBSBEC, Fatehgarh Sahib)

Abstract

Particle Swarm Optimization (PSO) has emulated the social behaviour of some animals such as a flock of birds and a school of fish, searching for food. This communicative sociality when modelled as computational procedure has solved a wide range of complex problems. Over the years, PSO has undergone transformations and numerous variants have come up. In this paper, PSO has been hybridized with two new algorithms to solve the fixed charge transportation problem to minimize the transportation cost (variable and fixed) of delivering goods while satisfying supply/demand constraints. The method considers the reduction of objective function defined by Balinski, Adlakha et al., Yousefi et al. and is incorporated within the PSO. An independent approach of solving the problem on the basis of variable cost initially followed by addition of fixed cost has also been explored. It was observed that proposed PSO works best without reducing the objective function. The simulation results reveal a substantial gain of the proposed method in terms of its efficiency and effectiveness examined on different test problems. To validate the claims, the proposed PSO has also been compared with the solutions attained by other existing methods (either exact or heuristics).

Suggested Citation

  • Gurwinder Singh & Amarinder Singh, 2021. "Solving fixed-charge transportation problem using a modified particle swarm optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1073-1086, December.
  • Handle: RePEc:spr:ijsaem:v:12:y:2021:i:6:d:10.1007_s13198-021-01171-2
    DOI: 10.1007/s13198-021-01171-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01171-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01171-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Minghe & Aronson, Jay E. & McKeown, Patrick G. & Drinka, Dennis, 1998. "A tabu search heuristic procedure for the fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 441-456, April.
    2. David I. Steinberg, 1970. "The fixed charge problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 17(2), pages 217-235, June.
    3. Warren M. Hirsch & George B. Dantzig, 1968. "The fixed charge problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 15(3), pages 413-424, September.
    4. Richard S. Barr & Fred Glover & Darwin Klingman, 1981. "A New Optimization Method for Large Scale Fixed Charge Transportation Problems," Operations Research, INFORMS, vol. 29(3), pages 448-463, June.
    5. Michel L. Balinski, 1961. "Fixed‐cost transportation problems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 8(1), pages 41-54, March.
    6. Adlakha, Veena & Kowalski, Krzysztof & Wang, Simi & Lev, Benjamin & Shen, Wenjing, 2014. "On approximation of the fixed charge transportation problem," Omega, Elsevier, vol. 43(C), pages 64-70.
    7. Udatta S. Palekar & Mark H. Karwan & Stanley Zionts, 1990. "A Branch-and-Bound Method for the Fixed Charge Transportation Problem," Management Science, INFORMS, vol. 36(9), pages 1092-1105, September.
    8. Katta G. Murty, 1968. "Solving the Fixed Charge Problem by Ranking the Extreme Points," Operations Research, INFORMS, vol. 16(2), pages 268-279, April.
    9. Mojtaba Akbari & Saber Molla-Alizadeh-Zavardehi & Sadegh Niroomand, 2020. "Meta-heuristic approaches for fixed-charge solid transportation problem in two-stage supply chain network," Operational Research, Springer, vol. 20(1), pages 447-471, March.
    10. Garg, Harish, 2016. "A hybrid PSO-GA algorithm for constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 292-305.
    11. Adlakha, Veena & Kowalski, Krzysztof, 2003. "A simple heuristic for solving small fixed-charge transportation problems," Omega, Elsevier, vol. 31(3), pages 205-211, June.
    12. Sagratella, Simone & Schmidt, Marcel & Sudermann-Merx, Nathan, 2020. "The noncooperative fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 373-382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Musa Mohammed & Nasir Shafiq & Ali Elmansoury & Al-Baraa Abdulrahman Al-Mekhlafi & Ehab Farouk Rached & Noor Amila Zawawi & Abdulrahman Haruna & Aminu Darda’u Rafindadi & Muhammad Bello Ibrahim, 2021. "Modeling of 3R (Reduce, Reuse and Recycle) for Sustainable Construction Waste Reduction: A Partial Least Squares Structural Equation Modeling (PLS-SEM)," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
    2. Nabaranjan Bhattacharyee & Nirmal Kumar & Sanat Kumar Mahato & Puja Supakar, 2022. "Reliability of the illumination of the darkroom with different scenario of the switching methods in uncertain environment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2482-2499, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesús Sáez Aguado, 2009. "Fixed Charge Transportation Problems: a new heuristic approach based on Lagrangean relaxation and the solving of core problems," Annals of Operations Research, Springer, vol. 172(1), pages 45-69, November.
    2. Erika Buson & Roberto Roberti & Paolo Toth, 2014. "A Reduced-Cost Iterated Local Search Heuristic for the Fixed-Charge Transportation Problem," Operations Research, INFORMS, vol. 62(5), pages 1095-1106, October.
    3. Kowalski, Krzysztof & Lev, Benjamin & Shen, Wenjing & Tu, Yan, 2014. "A fast and simple branching algorithm for solving small scale fixed-charge transportation problem," Operations Research Perspectives, Elsevier, vol. 1(1), pages 1-5.
    4. Alexey Sorokin & Vladimir Boginski & Artyom Nahapetyan & Panos M. Pardalos, 2013. "Computational risk management techniques for fixed charge network flow problems with uncertain arc failures," Journal of Combinatorial Optimization, Springer, vol. 25(1), pages 99-122, January.
    5. Lev, Benjamin & Kowalski, Krzysztof, 2011. "Modeling fixed-charge problems with polynomials," Omega, Elsevier, vol. 39(6), pages 725-728, December.
    6. Jeffery L. Kennington & Charles D. Nicholson, 2010. "The Uncapacitated Time-Space Fixed-Charge Network Flow Problem: An Empirical Investigation of Procedures for Arc Capacity Assignment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 326-337, May.
    7. Jawahar, N. & Balaji, A.N., 2009. "A genetic algorithm for the two-stage supply chain distribution problem associated with a fixed charge," European Journal of Operational Research, Elsevier, vol. 194(2), pages 496-537, April.
    8. Roberto Roberti & Enrico Bartolini & Aristide Mingozzi, 2015. "The Fixed Charge Transportation Problem: An Exact Algorithm Based on a New Integer Programming Formulation," Management Science, INFORMS, vol. 61(6), pages 1275-1291, June.
    9. Yixin Zhao & Torbjörn Larsson & Elina Rönnberg & Panos M. Pardalos, 2018. "The fixed charge transportation problem: a strong formulation based on Lagrangian decomposition and column generation," Journal of Global Optimization, Springer, vol. 72(3), pages 517-538, November.
    10. A. N. Balaji & J. Mukund Nilakantan & Izabela Nielsen & N. Jawahar & S. G. Ponnambalam, 2019. "Solving fixed charge transportation problem with truck load constraint using metaheuristics," Annals of Operations Research, Springer, vol. 273(1), pages 207-236, February.
    11. Adlakha, Veena & Kowalski, Krzysztof & Lev, Benjamin, 2010. "A branching method for the fixed charge transportation problem," Omega, Elsevier, vol. 38(5), pages 393-397, October.
    12. V. Adlakha & K. Kowalski, 2015. "Fractional Polynomial Bounds for the Fixed Charge Problem," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1026-1038, March.
    13. Adlakha, Veena & Kowalski, Krzysztof & Wang, Simi & Lev, Benjamin & Shen, Wenjing, 2014. "On approximation of the fixed charge transportation problem," Omega, Elsevier, vol. 43(C), pages 64-70.
    14. Dukwon Kim & Xinyan Pan & Panos Pardalos, 2006. "An Enhanced Dynamic Slope Scaling Procedure with Tabu Scheme for Fixed Charge Network Flow Problems," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 273-293, May.
    15. Bala Shetty, 1990. "A relaxation/decomposition algorithm for the fixed charged network problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(2), pages 327-340, April.
    16. Mojtaba Akbari & Saber Molla-Alizadeh-Zavardehi & Sadegh Niroomand, 2020. "Meta-heuristic approaches for fixed-charge solid transportation problem in two-stage supply chain network," Operational Research, Springer, vol. 20(1), pages 447-471, March.
    17. Sun, Minghe & Aronson, Jay E. & McKeown, Patrick G. & Drinka, Dennis, 1998. "A tabu search heuristic procedure for the fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 441-456, April.
    18. Adlakha, Veena & Kowalski, Krzysztof, 2003. "A simple heuristic for solving small fixed-charge transportation problems," Omega, Elsevier, vol. 31(3), pages 205-211, June.
    19. ORTEGA, Francisco & WOLSEY, Laurence, 2000. "A branch-and-cut algorithm for the single commodity uncapacitated fixed charge network flow problem," LIDAM Discussion Papers CORE 2000049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Yogesh Agarwal & Yash Aneja, 2012. "Fixed-Charge Transportation Problem: Facets of the Projection Polyhedron," Operations Research, INFORMS, vol. 60(3), pages 638-654, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:12:y:2021:i:6:d:10.1007_s13198-021-01171-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.