IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i10p1749-d426491.html
   My bibliography  Save this article

A New Hybrid BA_ABC Algorithm for Global Optimization Problems

Author

Listed:
  • Gülnur Yildizdan

    (Kulu Vocational School, Selcuk University, Kulu, 42770 Konya, Turkey)

  • Ömer Kaan Baykan

    (Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, 42250 Konya, Turkey)

Abstract

Bat Algorithm (BA) and Artificial Bee Colony Algorithm (ABC) are frequently used in solving global optimization problems. Many new algorithms in the literature are obtained by modifying these algorithms for both constrained and unconstrained optimization problems or using them in a hybrid manner with different algorithms. Although successful algorithms have been proposed, BA’s performance declines in complex and large-scale problems are still an ongoing problem. The inadequate global search capability of the BA resulting from its algorithm structure is the major cause of this problem. In this study, firstly, inertia weight was added to the speed formula to improve the search capability of the BA. Then, a new algorithm that operates in a hybrid manner with the ABC algorithm, whose diversity and global search capability is stronger than the BA, was proposed. The performance of the proposed algorithm (BA_ABC) was examined in four different test groups, including classic benchmark functions, CEC2005 small-scale test functions, CEC2010 large-scale test functions, and classical engineering design problems. The BA_ABC results were compared with different algorithms in the literature and current versions of the BA for each test group. The results were interpreted with the help of statistical tests. Furthermore, the contribution of BA and ABC algorithms, which constitute the hybrid algorithm, to the solutions is examined. The proposed algorithm has been found to produce successful and acceptable results.

Suggested Citation

  • Gülnur Yildizdan & Ömer Kaan Baykan, 2020. "A New Hybrid BA_ABC Algorithm for Global Optimization Problems," Mathematics, MDPI, vol. 8(10), pages 1-36, October.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1749-:d:426491
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/10/1749/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/10/1749/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaige Wang & Lihong Guo, 2013. "A Novel Hybrid Bat Algorithm with Harmony Search for Global Numerical Optimization," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-21, February.
    2. Garg, Harish, 2016. "A hybrid PSO-GA algorithm for constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 292-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaojuan Zhang & Wanliang Wang & Gaofeng Pan, 2020. "A Distributed Quantum-Behaved Particle Swarm Optimization Using Opposition-Based Learning on Spark for Large-Scale Optimization Problem," Mathematics, MDPI, vol. 8(11), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alaa Tharwat & Aboul Ella Hassanien, 2019. "Quantum-Behaved Particle Swarm Optimization for Parameter Optimization of Support Vector Machine," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 576-598, October.
    2. Adane Abebaw Gessesse & Rajashree Mishra & Mitali Madhumita Acharya & Kedar Nath Das, 2020. "Genetic algorithm based fuzzy programming approach for multi-objective linear fractional stochastic transportation problem involving four-parameter Burr distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 93-109, February.
    3. Yassin Belkourchia & Mohamed Zeriab Es-Sadek & Lahcen Azrar, 2023. "New Hybrid Perturbed Projected Gradient and Simulated Annealing Algorithms for Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 438-475, May.
    4. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    5. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    6. Brayan A. Atoccsa & David W. Puma & Daygord Mendoza & Estefany Urday & Cristhian Ronceros & Modesto T. Palma, 2024. "Optimization of Ampacity in High-Voltage Underground Cables with Thermal Backfill Using Dynamic PSO and Adaptive Strategies," Energies, MDPI, vol. 17(5), pages 1-19, February.
    7. Luo, Qifang & Yang, Xiao & Zhou, Yongquan, 2019. "Nature-inspired approach: An enhanced moth swarm algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 57-92.
    8. Xiang, Shihu & Yang, Jun, 2023. "A novel adaptive deployment method for the single-target tracking of mobile wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.
    10. Máximo Méndez & Mariano Frutos & Fabio Miguel & Ricardo Aguasca-Colomo, 2020. "TOPSIS Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    11. Aqsa Naeem & Naveed Ul Hassan & Chau Yuen & S. M. Muyeen, 2019. "Maximizing the Economic Benefits of a Grid-Tied Microgrid Using Solar-Wind Complementarity," Energies, MDPI, vol. 12(3), pages 1-22, January.
    12. Ahmed A. Ewees & Mohammed A. A. Al-qaness & Laith Abualigah & Diego Oliva & Zakariya Yahya Algamal & Ahmed M. Anter & Rehab Ali Ibrahim & Rania M. Ghoniem & Mohamed Abd Elaziz, 2021. "Boosting Arithmetic Optimization Algorithm with Genetic Algorithm Operators for Feature Selection: Case Study on Cox Proportional Hazards Model," Mathematics, MDPI, vol. 9(18), pages 1-22, September.
    13. Maissa Tamraz & Yaming Yang, 2017. "Price Optimisation for New Business," Papers 1711.07753, arXiv.org.
    14. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    15. Aniruddha Samanta & Kajla Basu, 2019. "Multi-objective reliability redundancy allocation problem considering two types of common cause failures," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 369-383, June.
    16. Chen, Shuixia & Wang, Jian-qiang & Zhang, Hong-yu, 2019. "A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 41-54.
    17. Mohit Agarwal & Gur Mauj Saran Srivastava, 2018. "Genetic Algorithm-Enabled Particle Swarm Optimization (PSOGA)-Based Task Scheduling in Cloud Computing Environment," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1237-1267, July.
    18. Cheng-Long Wei & Gai-Ge Wang, 2020. "Hybrid Annealing Krill Herd and Quantum-Behaved Particle Swarm Optimization," Mathematics, MDPI, vol. 8(9), pages 1-23, August.
    19. Jiang Li & Lihong Guo & Yan Li & Chang Liu, 2019. "Enhancing Elephant Herding Optimization with Novel Individual Updating Strategies for Large-Scale Optimization Problems," Mathematics, MDPI, vol. 7(5), pages 1-35, April.
    20. Gao, Renbo & Wu, Fei & Zou, Quanle & Chen, Jie, 2022. "Optimal dispatching of wind-PV-mine pumped storage power station: A case study in Lingxin Coal Mine in Ningxia Province, China," Energy, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1749-:d:426491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.