IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v10y2019i3d10.1007_s13198-019-00785-x.html
   My bibliography  Save this article

Multi-objective reliability redundancy allocation problem considering two types of common cause failures

Author

Listed:
  • Aniruddha Samanta

    (NIT)

  • Kajla Basu

    (NIT)

Abstract

Common cause failures actuate simultaneous failure in the components of system and can incredibly reduce the reliability of the system. So the evaluation of common cause failure rates and its effect on system reliability is very much significant. When common cause failures are considered, failure rate of the components are not independent. The influence of common cause failure (CCF) to system reliability has motivated to consider common cause failures in reliability redundancy allocation problem. So, a novel multi-objective reliability redundancy allocation problem is formulated here with the objectives of maximizing system reliability and minimizing system cost in the presence of common cause failures. In this article, two types of common causes are highlighted, namely fatal and non-fatal CCFs, in addition to random failures. These types of failures lead to simultaneous failure of multiple components because of a common cause. An attempt has been made for the first time to solve the multi-objective optimization problem using two meta-heuristic algorithms which gives the Pareto optimal solution. Since the rapid advancements in Science and Technology encouraged the researchers for the optimal design of complex systems considering different environmental situations, two numerical evidences based on complex systems has been considered here. The results indicate the reduction of optimal redundancy with two types of CCF when compared to random failure alone.

Suggested Citation

  • Aniruddha Samanta & Kajla Basu, 2019. "Multi-objective reliability redundancy allocation problem considering two types of common cause failures," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 369-383, June.
  • Handle: RePEc:spr:ijsaem:v:10:y:2019:i:3:d:10.1007_s13198-019-00785-x
    DOI: 10.1007/s13198-019-00785-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-019-00785-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-019-00785-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramirez-Marquez, Jose E. & Coit, David W., 2007. "Optimization of system reliability in the presence of common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1421-1434.
    2. Garg, Harish, 2016. "A hybrid PSO-GA algorithm for constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 292-305.
    3. Li, Chun-yang & Chen, Xun & Yi, Xiao-shan & Tao, Jun-yong, 2010. "Heterogeneous redundancy optimization for multi-state series–parallel systems subject to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 202-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsieh, Tsung-Jung, 2023. "Performance indicator-based multi-objective reliability optimization for multi-type production systems with heterogeneous machines," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2017. "Redundancy optimization for series-parallel phased mission systems exposed to random shocks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 554-560.
    2. KanÄ ev, DuÅ¡ko & ÄŒepin, Marko, 2012. "A new method for explicit modelling of single failure event within different common cause failure groups," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 84-93.
    3. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    4. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    5. Yuchang Mo & Liudong Xing, 2013. "An enhanced decision diagram-based method for common-cause failure analysis," Journal of Risk and Reliability, , vol. 227(5), pages 557-566, October.
    6. Li, Zhaojun & Liao, Haitao & Coit, David W., 2009. "A two-stage approach for multi-objective decision making with applications to system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1585-1592.
    7. Cook, Jason L. & Ramirez-Marquez, Jose Emmanuel, 2009. "Optimal design of cluster-based ad-hoc networks using probabilistic solution discovery," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 218-228.
    8. Yassin Belkourchia & Mohamed Zeriab Es-Sadek & Lahcen Azrar, 2023. "New Hybrid Perturbed Projected Gradient and Simulated Annealing Algorithms for Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 438-475, May.
    9. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    10. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    11. Brayan A. Atoccsa & David W. Puma & Daygord Mendoza & Estefany Urday & Cristhian Ronceros & Modesto T. Palma, 2024. "Optimization of Ampacity in High-Voltage Underground Cables with Thermal Backfill Using Dynamic PSO and Adaptive Strategies," Energies, MDPI, vol. 17(5), pages 1-19, February.
    12. Luo, Qifang & Yang, Xiao & Zhou, Yongquan, 2019. "Nature-inspired approach: An enhanced moth swarm algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 57-92.
    13. Byun, Ji-Eun & Song, Junho, 2021. "Generalized matrix-based Bayesian network for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    14. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.
    15. Máximo Méndez & Mariano Frutos & Fabio Miguel & Ricardo Aguasca-Colomo, 2020. "TOPSIS Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    16. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    17. Azadeh, A. & Maleki Shoja, B. & Ghanei, S. & Sheikhalishahi, M., 2015. "A multi-objective optimization problem for multi-state series-parallel systems: A two-stage flow-shop manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 62-74.
    18. Gao, Shan, 2023. "Reliability analysis and optimization for a redundant system with dependent failures and variable repair rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 637-659.
    19. Chen, Shuixia & Wang, Jian-qiang & Zhang, Hong-yu, 2019. "A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 41-54.
    20. Gülnur Yildizdan & Ömer Kaan Baykan, 2020. "A New Hybrid BA_ABC Algorithm for Global Optimization Problems," Mathematics, MDPI, vol. 8(10), pages 1-36, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:10:y:2019:i:3:d:10.1007_s13198-019-00785-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.